CENTRO DE INVESTIGACION Y DE ESTUDIOS AVANZADOS
DEL INSTITUTO POLITECNICO NACIONAL

UNIDAD ZACATENCO
DEPARTAMENTO DE FiSICA

“Aspectos de mecanica de branas, modelos
geomeétricos intrinsecos”

Tesis que presenta

Giovany Cruz Huerfano

para obtener el Grado de
Doctor en Ciencias
en la Especialidad de

Fisica

Director de tesis:  Dr. Riccardo Capovilla Chiariglione

Ciudad de México Agosto, 2023



CENTER FOR RESEARCH AND ADVANCED STUDIES OF THE NATIONAL
POLYTECHNIC INSTITUTE

PHYSICS DEPARTMENT

“ Aspects of Brane Mechanics, Geometric
Intrinsic Models”

by

Giovany Cruz Huerfano
In order to obtain the
Doctor of Science
degree, speciality in

Physics

Advisor: Ph. D. Riccardo Capovilla Chiariglione

Mexico City August, 2023



Aspects of brane mechanics

Geometric intrinsic models

By

GIOVANY CRUZ H.

Department of Physics
CENTER FOR RESEARCH AND ADVANCED STUDIES OF THE NATIONAL
POLYTECHNIC INSTITUTE

AUGUST 2023






PUBLISHED PAPERS

This thesis project is based on the following published papers:

e Capovilla, R., and Cruz, G. (2019). A covariant simultaneous action for branes.
Annals of Physics, 411, 167959.

e Capovilla, R., Cruz, G., and Loépez, E. Y. (2022). Covariant higher order perturba-
tions of branes in curved spacetime. Physical Review D, 105(2), 025011.

e Capovilla, R., Cruz, G., and Rojas, E. (2022). Ostrogradsky-Hamilton approach to
geodetic brane gravity. International Journal of Modern Physics D, 31(02), 2250008.

* Capovilla, R., Cruz, G., and Rojas, E. (2022). Jacobi equations of geodetic brane
gravity.Classical and Quantum Gravity, 39 235005.






DEDICATION AND ACKNOWLEDGEMENTS

patience, and encouragement throughout this journey. I dedicate this thesis in

loving memory of my advisor Riccardo Capovilla, who inspired and guided me
with his brilliance and kindness. I also express my gratitude to Professor Efrain Rojas,
whose insights and assistance were invaluable to the completion of this work. I extend
my heartfelt thanks to my dear friends for their unwavering support and friendship.
Finally, I would like to express my gratitude to CONACYT for the scholarship 786576,
which provided invaluable support during the completion of my doctoral studies.

T o my beloved parents and my wife Judith, who have supported me with their love,

1i1






RESUMEN

a mecanica de branas se entiende como el estudio de la dinamica de objetos exten-

didos y desempeiia un papel esencial en varios contextos de la fisica. Por ejemplo,

en el marco de los escenarios de mundos de branas, donde el universo de cuatro
dimensiones se considera como un objeto extendido incrustado en un fondo de mayor
dimension; en la teoria M, donde las branas se consideran objetos fundamentales. Tam-
bién se pueden mencionar otras aplicaciones en el campo de la astrofisica y la fisica de
agujeros negros, donde los grados de libertad fisicos estan localizados en subvariedades
del espacio-tiempo.

En este trabajo, definimos y discutimos diversas herramientas variacionales que nos
permiten calcular eficientemente variaciones de orden superior de la accién para ob-
jetos extendidos. Implementamos varios de estos métodos variacionales en un modelo
geométrico introducido por Regge y Teitelboim en la década de 1970. En este modelo,
el universo se propone como un objeto extendido incrustado en un espacio plano de
mayor dimension, y sus grados de libertad son las llamadas funciones de incrustacion.
Estudiamos las ecuaciones de movimiento y las correspondientes ecuaciones de Jacobi,
que nos permiten examinar la estabilidad de cualquier solucién particular de este modelo.
Ademas, realizamos un estudio hamiltoniano de este modelo, considerandolo como un
sistema singular de orden superior.






ABSTRACT

plays an essential role in various contexts of physics. For example, in the frame-

work of brane world scenarios, where the four-dimensional universe is considered
as an extended object embedded in a higher-dimensional background; in M-theory, where
branes are considered fundamental objects. Other applications can also be mentioned in
the field of astrophysics and black hole physics, where the physical degrees of freedom
are localized on submanifolds of spacetime.

B rane mechanics is understood as the study of the dynamics of extended objects and

In this work, we define and discuss various variational tools that allow us to efficiently
calculate higher-order variations of the action for extended objects. We implement several
of these variational methods in a geometric model introduced by Regge and Teitelboim
in the 1970s. In this model, the universe is proposed as an extended object embedded in
a higher-dimensional flat space, and its degrees of freedom are the so-called embedding
functions. We study the equations of motion and the corresponding Jacobi equations,
which allow us to examine the stability of any particular solution of this model. Addi-
tionally, we perform a Hamiltonian study of this model, considering it as a higher-order
singular system.

vii
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CHAPTER

INTRODUCTION

rane mechanics is a field dedicated to studying the dynamics of extended objects
known as branes. These branes generalize the concepts of particles and strings.
By varying the functional action, one can determine the behavior of branes. This
action is formulated using quantities that remain invariant under reparametrizations
of the brane’s worldvolume, which is a submanifold embedded in a higher-dimensional

manifold known as ambient spacetime, background spacetime, or target spacetime [72].

Branes play a crucial role in the investigation of various physical systems, where their
degrees of freedom are confined to specific submanifolds. For instance, in classical me-
chanics, when dealing with systems conserving energy, the configuration space describing
the system’s dynamics can be mapped to a geodesic curve on a new manifold, which
incorporates the Jacobi metric. This metric encodes relevant physical quantities of the
system. This mapping allows for the correspondence of the Euler-Lagrange equations of
the physical system with the geodesic equations [92, 105]. Another significant application
arises in M-theory, where branes are considered fundamental objects [102]. Moreover,
branes play a crucial role in the braneworld scenario, which conceptualizes the universe
as a brane embedded in a higher-dimensional ambient spacetime [63, 72, 95]. Branes
are also employed in astrophysics to describe inhomogeneities in the early universe,
potentially originating from quantum fluctuations [107]. They have even been utilized to
explain the formation of primordial black holes [49]. The study of surfaces and boundary

entropy also draws motivation from branes [2, 42, 104]. The widespread presence of
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CHAPTER 1. INTRODUCTION

branes in models aimed at elucidating diverse physical systems underscores the impor-
tance of developing comprehensive methodologies for understanding the dynamics of
extended objects [72].

While the first variation of the action yields equations of motion that describe the
evolution of a physical system, it does not provide information regarding solution stabil-
ity. To obtain a more complete description, it becomes necessary to compute the second
variation of the action, leading to the Jacobi equation. These equations have multiple
applications, such as analyzing the stability of specific solutions, approximating solutions
for highly nonlinear systems through Jacobi fields, and investigating chaotic behavior by
establishing connections between Jacobi fields and Lyapunov coefficients [26]. In the con-
text of a free particle in curved spacetime, the Jacobi equation coincides with the geodesic
deviation equation, shedding light on the separation or convergence of infinitesimally
neighboring geodesics due to the curvature background. This understanding extends to

string theory as well.

In 1971, Tullio Regge and Claudio Teitelboim proposed a geometric model that con-
siders the universe as a brane embedded in a larger spacetime [95]. This model, initially
referred to as "gravity a la string" due to its inspiration from string theory, later became
known as geodetic brane gravity (GBG) introduced by Davidson et al. [66] . It serves as
an extension of general relativity (GR), encompassing all GR solutions. In this thesis,
we will refer to this model as the RT model or simply GBG. The degrees of freedom of
the brane in this model are described by background functions known as embedding

functions, which specify and describe the brane’s worldvolume [66].

An interesting feature of the GBG model is that its cosmology equations, when de-
rived, can be reduced to the Friedman equations of standard cosmology, but with an
additional term in the energy-momentum tensor. This additional term has been sug-
gested to represent dark matter, in other words, the dark matter could have a geometric
origin. [66]. However, the proposal initially faced criticism due to gauge dependency
and the lack of an appropriate Hamiltonian formulation [36]. Nevertheless, significant
progress has been made in addressing these concerns, with several authors advancing
the formulation and analysis of GBG, including quantum aspects [16, 28, 31, 86, 88]. In
this work, we conduct a Hamiltonian analysis of the RT model, treating it as a system

of high-order derivatives, using the Hamiltonian extension introduced by Ostrogradsky.



Furthermore, we analyze the model using the variational tools discussed in the earlier

sections of this thesis.

The organization of this thesis is as follows. In the first section, we introduce the no-
tation employed throughout the work and present relevant geometric objects in the
context of brane mechanics. We then discuss different variational derivatives that enable
us to calculate action variations, obtaining covariant equations for both world volume
reparametrizations and background spacetime diffeomorphisms. Higher-order variations
of the action are also explored, along with the utility of the resulting equations. Specific
examples are provided to illustrate the application of variational tools. In the second
part of this thesis, we study and analyze the equations of the RT model, employing
the variational derivatives discussed earlier. We linearize the equations of motion to
obtain and examine the Jacobi equations. By considering the Jacobi equations in the
RT model, we investigate the stability of a four-dimensional Schwarzschild black hole
embedded in a six-dimensional spacetime. Our stability analysis focuses on determining
the quasi-normal modes’ oscillation frequencies, which can be expressed in terms of
deformation fields or Jacobi fields. To achieve this, numerical analysis is employed to
obtain these oscillation frequencies. Subsequently, we conduct a Hamiltonian analysis
of GBG, treating it as a system with singular derivative high-order terms, utilizing
the theory developed by Ostrogradsky. The constraints of the system are determined,
ensuring the correct count of degrees of freedom and facilitating the construction of
Dirac brackets, which are essential for canonical quantization. Finally, we provide a
brief discussion, draw conclusions from this work, and outline potential future projects

derived from this thesis.






CHAPTER

BRANE MECHANICS GEOMETRY

n order to make this work easy to understand to most people who feel attracted
to study of physical systems using geometric models. I use a familiar language
and notation for the majority of physicists, mathematicians, and people in similar
areas. I hope that this chapter serves as an introduction to the geometry behind brane
mechanics and that it will be of great use to that amateur student who has concerns
about this fascinating topic. If the reader wants to delve more into some concepts exposed

here, the following references could help him [17, 21-24].

In this work, we will study relativistic systems; for this reason, we are going to work with
pseudo-Riemannian manifolds[82]. These are diferrentiable manifolds where the require-
ment of positive-defiteness is relaxed. In brane mechanics the evolution of the brane is
described by a pseudo-Riemannian manifold called world volume. On the another hand,
the brane is a differential Riemannian manifold because its dimensions are only spatial
and the spatial metric is always positive-definite. For example, a particle is a brane with
spatial dimension zero, and its world volume is the worldline of the particle[110], the
following immediate example is a string that has one only spatial dimension, and the
world volume is known as the string worldsheet [116]. In summary, a brane is a spacial

object that generalizes the concept of particle and string.
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CHAPTER 2. BRANE MECHANICS GEOMETRY

2.1 Notation

Consider that the world volume that describes the evolution of a brane is a p + 1 dimen-
sional manifold, and we denote it by m. This is embedded in a bigger ambient spacetime
A of dimension N + 1. ./, as well as m, is a pseudo-Riemannian manifold and it has
associated a metric ), with a signature {—, +,..,+} (all Greek index runs from zero to N),
evidently N > p. In general, the ambient spacetime can be curved, and one can define a

covariant derivative 9, such that, this is compatible with the metric of .Z, i.e.
(2.1) Dunap =0,

if this derivative applies to a vector V# € ./, one gets

(2.2) 2, V¥ =0, VF+TV VY,

where I'# 5 are the Christoffel symbols of ambient spacetime. Now, if one applies the

commutator,constructed by covariant derivatives, to a vector V¥, one obtains
(2.3) [@ﬂ7 @1/] Va = Raﬂvﬁvﬁ,

this last equation can be generalized by taking covariant derivative along arbitrary
directions 9y = V#9,,, then

(2.4) ([@U,@W] - @[U,W]) V%= RaguVU”WVVU,

here [U,W] is the Lie bracket of two vectors fields, R,p,y are the Riemann tensor

components of .4, and these can be written using Christoffel symbols as follows
(2.5) Ry =2 (a[ﬂrpm +TPg1, 0 V]U) ,

where square brackets represent anticommutation between indexes (Ap,,; = 1/2 (A = Avu))'

Because m is embedded in a larger spacetime, the world volume can be described by
yH* = XH(x®), where y* are the coordinates of .4, X* are known as embedding functions,
and x® are the coordinates on world volume (the latin indexes a,b, ¢, ... run from zero to
p ). And one can build tangent vectors to m, only taking the derivative of the embedding

function with respect to the coordinates x®

H._ —
(2.6) XY= 0.X" = ——.

6



2.1. NOTATION

Due to the fact tangent vectors are built through a variation of embedding functions
along each coordinate on m. They form a vectorial basis of the world volume at each
point. Now, if one takes the inner product between these vectors, which is defined by
metric 7,,, one gets components g4, of a induced metric. This metric has a signature

{—,+,...,+}. Usually, it is said .# induces a metric on m in the following way
(2.7 8ab :nqung:Xa'Xb,

where <« - > denotes the inner product from ambient spacetime. For geometric reasons
(immersion theorems), it is known to induce a general metric g,;. It is necessary that the
background spacetime has at most dimension N = p(p + 1)/2. In addition, if worldvolume
has isometries, i.e., the induced metric admits Killing vectors, this number can be reduced
[20, 45, 64]. Note that even though metric g, is a (0,2)-tensor on the world volume, this
transforms as a scalar under diffeomorphism of ambient spacetime. One can calculate
the inverse of the induced metric that we denote by g%°, and this is used to up the
indexes of the tensors of m, while g,; lows them. The metric determinant is g, which is
less than zero since the world volume is a timelike manifold, i.e., its normal vectors are
spacelike, a spacelike vector V fulfills V-V > 1 [12] . We denote the normal vectors to m
as n', where the index i refers to the i-th normal vector. There are N — p normal vectors,

and they fulfill the following properties
(2.8) n'-X,=0 n'-n/=6",

these equations define vectorial normal fields until one rotation O(NN — p) and a sign. The
indexes i, of normal vectors are lowered and raised by 6;; and 5%, respectively. The
composed set by tangent and normal vectors, {X,,n'}, forms a vectorial basis of ambient

spacetime. Thus, metric tensor 77,, can be written as
2.9) Nuv = huv + Huv’

where h*Y = g?® Xt X p and I,y =n Hinvi. Thus, one can build the following tangential

and normal projectors, respectively
(2.10) hlu'v = hﬂanav = h'uaha/v, Hluv = H'uanav = n'ulnvl.

One defines a covariant derivative along the coordinates of the world volume, such that,
this is also compatible with the background metric. One projects the covariant derivative

of ./ along tangent vectors of m, 2, := X% P. - Now, if one takes the gradient of vectors

7



CHAPTER 2. BRANE MECHANICS GEOMETRY

{X,,n'} using this derivative, it is obtained

(2113.) @aXb :Ycach_Kabini,
(2.11b) Dan’ =K' X 8% +w,"n .

These equations are commonly referred to as the Gauss-Weingarten equations, which
allow for the description of the full extrinsic geometry of a world volume. Here, v,
represents the Christoffel symbols associated with the induced metric. These symbols
provide valuable information regarding the tangential variations of tangent vectors

within the world volume. Their explicit expressions are given by
(2.12) Yab =ngXd'9aXb =Yap“
However, they must also satisfy the following

1
(2.13) Yab = Eng (0v8da +0a8db —048ab)-

On the other hand, K3’ is the i — th curvature extrinsic associated with i — ¢k normal
vector. In the literature, it is also called the second fundamental form. This geometric
object provides us with information about tangential changes when one makes a variation

of normal vectors along tangent vectors to m
(2.14) Kup'=Xo - Dpn' = -2, Xp-n' = -2, X, n' =K},

tt is important to observe that the extrinsic curvature is symmetric when the indices
a and b are exchanged, as a consequence of the property described in equation (2.8).
Additionally, the quantity w,*/ represents a twist potential associated with the freedom
to rotate the normal vectors at each point of the world volume [73]. In the literature, this
twist potential is often denoted by the symbol T [57]. Notably, under these rotations, w,

transforms as a connection.
(2.15) Wy — Ow,0 '+ 92,6071,

One can define a covariant derivative torsionless and compatible with induced metric
Zab- We denote it by V,. However, this covariant derivative does not consider the freedom
that normal vectors can be rotated at every point of m. Then, one can introduce another
covariant derivative V, that considers it. Thereby, when it applies to an object that

transforms as a (1,1)-tensor under these rotations, we have
(2.16) VoW, = VoW, — 0, Wy — wq jn P

8



2.1. NOTATION

Note that, induced metric transforms as a scalar under these rotations, then V,g.q =
Vo8 cd. On the other hand, extrinsic curvature K,;° transforms like a vector under the
same rotations due to free index i.

If now one takes the commutator of these covariant derivatives and applies it to an object

that transforms like a vector under these rotations, one obtains the following
(2.17) [V, Vp 1P = Qs /W),

where Q is the curvature associated with twist potential, and it is defined by
(2.18) Qabij = waaij - Vawaij - wbikwakj +waikwbkj.

this curvature is the conformal invariant traceless part of the squared extrinsic curvature
[21, 22].

Moreover, certain relations must be satisfied to ensure the consistency of the embedded
functions. These integrability conditions establish connections between the extrinsic and
intrinsic geometries of the world volume and the background geometry. They can be

expressed as follows

(2.19a) RaﬁqugXSXélX; = Rabed — Kac'Kpai + Kaa Kbei,
(2.19b) Rupn® XEXUX! =V Koy’ — VKoo',
(2.19¢) Ropuvn®nP XUXY = Qup™ Koo' Ko™ + Ky Ko

These are the integrability conditions of Gauss-Codazzi, Codazzi-Minardi, and Ricci,
respectively. Here 2%.4 is the Riemann tensor of world volume, and it can be written in
terms of Christoffel symbols of m, analogous to the equation (2.5).

In this brief section, we have shown the notation used throughout this work, and we
counted the most relevant geometric objects in brane mechanics. Besides, we reviewed
important identities that will be useful to calculate variations of important composed

geometric objects.






CHAPTER

VARIATION IN BRANE MECHANICS

his chapter is split into two principal parts. In the first, we discuss the variation

of the intrinsic and extrinsic geometry of the brane, taking into account the de-

formation of embedding function along only normal directions to m. We calculate,
for example, the variations of induced metric, extrinsic curvature, and other important
geometric objects. This kind of variation is so helpful to find the covariant equation of
motion under the transformation of the world volume.
In the second part, we take a totally covariant approach from the ambient spacetime,
and we make variations along a completely arbitrary vector (not only along the normal
vectors). Due to this fact, we obtain covariant equations of motion under diffeomorphisms

of ambient spacetime.

3.1 Normal variation to m

When dealing with extended objects, it is crucial that the world volume, which character-
izes the brane’s dynamics, remains invariant under reparametrization. This requirement
ensures that the brane’s behavior does not depend on the choice of coordinates employed
on the world volume. Constructing the action functional for the brane necessitates utiliz-
ing geometric quantities that preserve this symmetry. These quantities are constructed
using intrinsic and extrinsic geometric objects such as g,p and Kgp°. Thus, it is essential
to have a comprehensive understanding of the variations of these geometric objects to

effectively construct the action functional.

11



CHAPTER 3. VARIATION IN BRANE MECHANICS

The world volume of a brane is described by embedding functions that provide informa-
tion about its geometric structure within the ambient spacetime. When these embedding
functions undergo deformations, it leads to changes in the geometric properties. In other
words, a geometric object constructed based on these functions will be altered. We can
interpret the deformed embedding functions as representing the embedding functions of
a neighboring region of the world volume m. Mathematically, these deformed embedding

functions can be expressed as
3.1) XH=XF+s6XH,

where s is a small parameter and 6 X* is the vector along which one makes the deforma-

tion. And this can be decomposed in the basis {X,,n'} in the following way
(3.2) SXH=¢"XE +'nt;,

here ¢ is a vector under coordinates changes on the world volume while ¢' is a vector
under rotations of normal fields. Since the tangential part of the deformations can
be understood as a reparametrization of the world volume, and we will work with
geometric models that are invariant under these reparametrizations, then the tangential

deformations can be omitted, and we only consider that
(3.3) 85X =6=n;¢",

N —p fields ¢* determine the normal deformations . Thus, the variations of geometric
objects of m are a combination of ¢' and their derivatives. In this first subsection of this
chapter, we consider the deformation of the intrinsic geometry of world volume, and it is

helpful to define a covariant variation along the vector § given by
(3.4) Ds = 6"D,,.

Taking the gradient of tangent vector X, along deformation vector 6 and splitting it in

the background basis {n’,X,}, we obtain the following

(3.5) D5Xa = Parg”* X +Jain’,

where f,; and J,; are given by

(3.6) Bab = D5Xa Xp = Poas Joi =DsXq ni=-Xq - Dsn,;.

12



3.1. NORMAL VARIATION TO m

Note that, the term f,3, in the equation (3.5), plays a similar role to Christoffel symbols.

While J,* transforms like a vector under rotation of normal vectors.

It is possible to write Bqp and J,; in terms of ¢! and its derivatives. However, we
must assume that if one deforms the world volume, the tangent vectors are still tangent,
i.e., the Lie derivative of tangent vectors along deformation vector 6 is equal to zero,
ZLsX, =0. This last implies that

3.7 Ds Xy =9D40.

Using (3.7) we can write 8,5 and J,; in the following way

(3.8) Bab = DsXa-Xp = Da(ni")-Xp = Kapi ¢’

(3.9) Jai = Da( $))-ni = (@an? -n)p; +Vadi = Vathi,

with these terms, one can calculate the variation of induced metric as follows
(3.10) Dogab = P6(Xa-Xb) = 2X0D5X = 2Pup = 2Kap' i,

and taking into account that g%“g.; = 6%, we have the variation of the inverse of the

induced metric is
(3.11) Dsg™® = —2K .

then the variation of the root of the determinant is given by

1 .
(3.12) Ds\/—8 = —EV—ggab@ag“” =v—g8uK® ¢,

If one works with the geometric model that only depends on the volume of m[54, 78],
the previous variations are enough. However, one also can work with action more
generals that depend on Ricci scalar, or combinations of it. For example, geodetic brane
gravity action [66, 95] or f(R) theories [103]. We can also have actions with invariant
reparametrization terms that are specific combinations of contraction of Riemann tensor,
such that, when these kinds of actions are varied, one obtains second-order equations of
motion [71]. Therefore, it is important to calculate the variation of Riemann, Ricci tensor,
and Ricci scalar. Taking into account that the Riemann tensor is built from the Christoffel
symbols and their derivatives, it is convenient, in the first instance, to calculate the
variation of the Christoffel symbols, which is given by

1
DsYab = =84V (P58 aq) + Va (P580a) — Vi (Ds8ab)]
(3.13) 2

=g [Vb (Kadi(Pi) +Vq (Kbdi(Pi) -Vg (Kabifbi)] ,

13



CHAPTER 3. VARIATION IN BRANE MECHANICS

where we have used the variation of induced metric in (3.12). One can take the result

(8.13) and substitute it into the variation of Riemann and Ricci tensor,

(3.14) D5 R bed = Ve (P57 ba) — Va (Zsybe),
(3.15) DsRab = Ve (DsY ab) — Vo (Psy ac),

then, one can calculate the Ricci variation as follows
DR = Rap D58 +8*° D5 Rat
= -2, K¢ + V, (gab@(s)’cab - g“@é?’bba)
= 2R, K¢ +V, ((gacgbd - gabng) Vb@agcd)

= 2R, K" + 2V, ((gacgbd - gabng) Vb(chi(Pi))

(3.16)

modulo a divergence, the variation of the Ricci scalar is
(3.17) DsR = ~2Rap K1’

These results encode the variation of the intrinsic geometry of the brane world volume.
However, sometimes it is essential to calculate the variation of a geometric object that
corresponds to the extrinsic geometry of m, such as extrinsic curvature. Since some
actions can be built using this object, for example, the Lovelock type brane gravity [4, 30],
where the action is built through specific contraction of this geometric object, and one

obtains second-order equations of motion, similar to lovelock theory [71].

The gradient along the deformation vector of normal vectors can also be expanded

on the basis {ey,n'}

(3.18) Dsn; = —Jaig Xy +vijn’,
note that, J,; is defined in (3.6), while y;; is given by
(3.19) Yij=Dsni n;=-Yji

Yi; plays a similar role as twist potential w." actually, it also transforms as a connexion

under rotation of normal fields
(3.20) y — Oy0 +(250)0 !

Considering the previous sentence, one can define a covariant variation 9 that takes

into account this gauge symmetry, where one can rotate normal vectors at every point
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3.1. NORMAL VARIATION TO m

of world volume. And when one applies this covariant variation to a (1, 1)-tensor under

these rotations, it is obtained
(3.21) ég‘l’ij=@5Tij—yik‘l’kj—)/jk‘l’ik.

If we want to have fully covariant equations of motion under coordinates changes, we
must use this covariant variation. Then, the covariant variation of the normal vector can

be written as
(3.22) Dsni = Jaig" Xy = — (Vo) X,

Using the definition of extrinsic curvature tensor, one can calculate its variations. Re-
member that K,;’ transforms as a vector under the rotations @, then 9?5 should be

applied
(3.23) DsKap' = —Dsn' - D,Xp —n' - Ds Dy Xy

where if one uses the variation of normal vectors and Gauss-Weingarten equations

(2.11a), the first term of the last equation can be written as

(3.24) —Dsn' - DX =Y qp

for the second term on the right-hand side of (3.23) , we utilize the Ricci identity given by
(3.25) (D5, 21X} — D15 x,1 X4 = RV vapn® ;XEX) ¢/,

using the equation (3.7) one has that [§,X,;] = 0, and hence the term proportional to
P15, x,1X b in (3.25) vanishes, so it is obtained the following

—n' D5 DXy = ~RMyapn, ' n® X0X) ¢ —nt - D, 25X,
(3.26) = —Rfyapny n® XEX} ) = Do (' D5Xp) + Dan' - D5 X,
= —R“wﬁn,fn“ijXZ(p" - ﬁaﬁb(,bi +KijKa0i¢j.
Therefore, the variation of extrinsic curvature tensor is
(3.27) DsKap' = —VoVpd' + Kpej Ko o' + R* yopn,'nf ; XIX) ¢

From this last result, it is easy to see that the variation of the mean extrinsic curvature

Ki=g%K, ;¢ is given by
(3.28) DsK' = A" — Ko K i/ + R*qpn ' nf ;R ),
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CHAPTER 3. VARIATION IN BRANE MECHANICS

where A = g%V, Vy.

Having under control the covariant variation of these geometric objects will allow us to
quickly calculate a large number of models that are invariant under reparametrizations

of the world volume.

3.1.1 Examples of geometric models in brane mechanics

As we have already commented the functional action is built with terms that are invariant
under symmetries of the physical system. In the case of extended objects, one must have
invariant terms under reparametrizations of the world volume of the brane. The first

action with this characteristic is the Dirac-Nambu-Goto action (DNG)

(3.29) SpnalX1=-aq f V.

P+1y into the integral

For convenience, we have absorbed the noncovariant volume term d
symbol, i.e., [, dP ly — /.- Note that (3.29) is an action proportional to the volume of
world volume, where a is a proportionality constant, which in the case of p =1 relates
to the tension in a relativistic string [94, 116]. In the early 1970s, Nambu and Gotto took
this action to describe the strong interaction [54, 78]. However, Paul Dirac had already
considered a similar action since 1962, in [39], to model the electron as an extensible
object. His aim was to explain the muon as a perturbation of this electron like-bubble.
Subsequently, this term has also been taken into a account to model topological defects
that could be originated in the early universe and could be responsible for forming
structures [6, 48, 108]. Additionally, this action was used to study the probability of
black hole formation through the collapse of perfectly circular strings [49]. Several more
models have been built through this action, see [5, 34, 35, 47, 69].

By performing the variation of the action (3.29) and using the results obtained in the

last sections, one gets

(3.30) P5SpncIX1= —aof Dsv/—8 = —Oéof \/—ggabKabi<Pi,
m m

where in the second equality, one has considered the equation (3.12). If one assumes
that the action, Spyg, extremizes for any field ¢>i, ie. @58 pNaG = 0, then the resulting

equations are
(3.31) gaK?P =K' =0.
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3.1. NORMAL VARIATION TO m

That is to say that the mean extrinsic curvatures of the world volume of the extended ob-
ject are identically zero. In the non-relativistic case, they are the equations for minimum
surfaces [41]. One can use the results of last subsection to calculate the linearization of
the equations of motion. In this case, the linearized equations coincide with the result

obtained in (3.28), when one equalizes them to zero
(3.32) ~AP' —Kop 'K ;¢ +RF qpn ' nP ih™ ¢/ = 0.

Notice that, the fields (bi fulfill these differential equations. Later, we will delve into the
geometric meaning of linearizing the equations of motion. Besides, we will use them to

obtain more information about the being studied physical system.

Another action that one can take is

(3.33) Sy = af v—gK'K;,
m

this action is the relativistic extension of Canham-Helfrich energy for an elastic mem-

brane [13, 60]. By calculating the variation of Sg, one obtains the following
PsSs =0 f Psv—gK'K; +2v/—gK;2:K",
m
(3.34) —o fm Ners [ZKi (—&pi — Koo' K ;7 + B qpninP jh“%pf) +KK K ,-] ,
=0 fm V=& {[K'KiK; - 2K,K oy K j+ 2R on ' nP 0 | @) - 2K R}

By integrating by parts in the last term of the last equality in (3.34) and extremizing the

action Sy, one gets the equations of motion
S . o .
(3.35) —-AK’ + §K‘KLKJ — KK K +R“mﬁnu’nﬁfh‘”[{i =0

Unlike the DNG model, here, these last equations of motion depend on background cur-
vature. It is owing to the fact Sy is a higher derivative action while Spyg only depends
on the first derivatives of embedded functions X*. Afterward, we will discuss another
action that satisfies the invariance under reparametrization and is proportional to the
integral of Ricci scalar Z. Nonetheless, this action plays a critical role in this work,

therefore it will be discussed in another chapter.

We have reviewed geometric models for branes where we have applied the variations of

different objects that were obtained in the last subsection.
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3.2 Variational Covariant Approach

Now a completly variational covariant approach from ambient spacetime is showed in
this chapter, here one does not split the perturbation into tangential and normal parts
concerning worldvolume m. This access establishes the brane mechanics as a covariant
fields theory. Where the covariance is regarding both diffeomorphisms of background and
reparametrization of m. The principal tool used here is a variational derivative, which is
inspired by a Bazanski work [7]. In calculating the standard variation, the variations of
a field involve an infinitesimal parameter. We denote it by s. This parameter defines a
uniparametric family of embedding functions denoted by X*(x%,s). One assumes that
X(x%,s=0)=X*(x%) are the embedding functions that define m. Thus if we consider an

infinitesimal variation around X*(x%), we have
(3.36) XH — XH+s6XH.

Note that even though embedding functions transform as scalar functions under back-
ground diffeomorphism. As we had already seen, 6 X* is a vector that can be understood
as the vector along which the deformation of the embedding functions of m is made. It is
given by [50, 68]

oX" = (ﬁ) .

ds s=0

In the variation of fields, it is usually convenient to define a covariant variation that con-
siders the system’s underlying symmetries. For this reason, we propose a fully covariant

variation, defined by
(3.37) PDx =6X"'D,

These types of covariant variation have been implemented in [8, 17]. By defining a covari-
ant variation as in (3.37) , conveniently, Zxn,, = 0 is fulfilled because the background
metric is compatible with 2,,. In addition, we assume at the beginning that the variation
is conserved along world volume. Geometrically, this translates that the Lie derivative of

deformation vector 6 X* vanishes along tangent vectors. This implies
(3.38) [Dx, D)X =2x X! —2,6X"

This can be understood owing to the fact that we are considering a one-parameter family
of embedding functions, labeled by parameter s, and infenetesimally partial derivatives
of these functions commutt, as required to have a foliation [50]. Unlike we did in the last

section, we resist the temptation to divide variation § X* into its normal and tangential
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3.2. VARIATIONAL COVARIANT APPROACH

parts. Although this is highly convenient at the first variation, because the tangential
variation can be associated with a reparametrization, and in the absence of borders, these
can be safely neglected as pure gauge, at higher orders, this early gauge fixing meddles
the general structure of the perturbation theory. Thus, if one maintains this covariant
structure under the background spacetime transformations, the higher-order variations
are more accessible. Carter has emphasized the utility of this covariant treatment of

spacetime in the brane mechanics, see [25].

We will consider invariant actions under diffeomorphisms of ambient spacetime and
reparametrization of m. Nevertheless, we will only focus on models that solely depends
on the first derivative of embedded functions, d,X*. This coincides with the components
of the vectors tangent to m, X~. Abusing the language, we can write these kinds of

actions as
(3.39) S[X1= f LX),

models such as So[X] in (3.33) are out of this variational approach. However, this
description still involves a large number of physics models. In (3.39), £ is the Lagrangian
density of weight one. Anew one has absorbed the noncovariant volume in the integral
symbol. By varying the action (3.39), for this one uses the covariant variation that has
been defined in (3.37). Then, one obtains

(3.40) 2xS[X]= f 2x < (XY),
m
by using the identity (3.38)
0« 0Z

(3.41) Dx L = —Dx X = —D,6X".

X T xR T ox e
By integrating by parts

0& a

(3.42) 9xS[X]1= f —u@aéX“ = f E(L)oXH +[ D,2°,

m aXa m m
where we identify current density of Noether as

0&

(3.43) 2= @6X“ =2,6X",

here 22,% is the canonical linear momentum. It is a one-form from background and

vectorial density from world volume, and this is given by

F1%
(3.44) Ry
o axt
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CHAPTER 3. VARIATION IN BRANE MECHANICS

The Euler-Lagrange equations are obtained when one equalizes the action variation to

zero. And these read as

0ZL

(3.45) éa,u (&L)=-9, (@

) =-2,2," =0,

notice that, these equations are a conservation law, because the action is invariant
under reparametrization. Besides, theses resulting equation are second order. Theses

characteristics are also shared by equations of motion of branes types Lovelock [30].

Coming up next, we will implement this method using as example the DNG action,
defined in (3.29). Taking into account that

0 1 0
5V E " Ev—gg“iaX—ygcd =v—g28nunX},
a a

then, linear momentum reads

(3.47) P = —agy/—g g™ X}

Note that, linear momentum is tangential to m. So equations of motions are given by

(3.46)

vanishing of first variation
(3.48) ~ D P, = 0Py (\/——g nwg“bxg) =0

These equations are covariant under diffeomorphisms of background spacetime, and
they look different from obtained equations in (3.31). However, they give us the same
information. Remember that in the last section, we obtained the equations of motion
splitting the deformation in the normal and tangential part to m, and we only chose a
deformation offshore normal fields since the tangential part does not contribute to the
dynamics. So it is possible to recover the equations obtained in (3.31) by projecting the

last equations along normal fields

(3.49) ~ D, 2" = agy—8Nwe °n"' D, X} = —a/—gK' =0,

we have used the Gauss-Weingarten equation (2.11a) in the second equality. One can

show that the projection of equations of motion (3.48) along tangent vectors is identically

Zero
~XED P, = X (-0 (V=g Nwe™ X}))
=—anld =5 b T+ = ab, d
(3.50) 0[ a( 88 )ng V=88 Y ab8cd
=V _ggbcvagab
=0
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3.2. VARIATIONAL COVARIANT APPROACH

In the second equality, it has been used the fact that the induced metric transforms as a
scalar under background transformations, then 2, (/=g g%®) = 0, (/=2 g®). In addition,
the equation (2.11a) was used too. Subsequently, in the last equality, we used that
covariant derivative V, is compatible with the metric g,;. Both the normal variations,
which we discussed in the first part of this chapter, and covariant general variations,
provide us with the tools to obtain the dynamics of a geometric model. However, the
completely covariant variational method turns out to be more efficient for calculating
high-order variations. We will see it in the next chapter, where we will fully exploit the
properties of the covariant derivative that we have defined, this will allow us to obtain

the respective equations for the different variations in a simple way.
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CHAPTER

HIGHER-ORDER VARIATIONS

his chapter is based in the papers Covariant higher order perturbations of branes

in curved spacetime and A covariant simultaneous action for branes. Where

we discuss the linearization of equations of motion (LEM).The LEM are a first-
order expansion of Euler-Lagrange’s equations around one of their solutions. One can
obtain them directly by varying the equations of motion. However, it is well known
that they can also be obtained through the second variation of the action. Thus, we can
implement the completely covariant approach reviewed in the last chapter to calculate
them. Additionally, we will go further and make a third variation of the action by
exploiting this variational approach. We will also review the importance of this third
variation in the analysis of a physical system. Finally, we will show a variational principle
that we have developed in the context of relativistic branes, which allows us to obtain the

first and second variations of the action at the same time in a straightforward manner.

4.1 Linearized Equations of Motion

The primary objective of a theoretical physicist is to construct models that can explain
the fundamental and essential characteristics of a physical system. However, due to the
complexity of certain systems, it is sometimes necessary to develop idealized models that
are only valid within a specific range and capture only a few aspects of the system. For
instance, in the 1920s, Alexander Friedman, Georges Lemaitre, Howard Robertson, and

Arthur Walker (FLRW) proposed a solution to the general relativity Einstein equations,
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CHAPTER 4. HIGHER-ORDER VARIATIONS

which describes an isotropic homogeneous universe in expansion. However, this model,
also known as the standard model of cosmology [10], cannot account for the formation
of structures in our universe, such as galaxies and galaxy clusters. To improve upon
this model, one may consider a slightly modified version that more accurately describes
our universe. This can be achieved by linearizing the Einstein equation and deriving
differential equations for the model’s variations. By solving these equations, we can
construct approximate solutions that provide a more precise description of the universe
[77].

In a broad sense, the LEM are useful in constructing new approximate solutions that
can provide a better description of a specific physical system. They are also valuable in
studying the linear stability of each solution of the physical system. The LEM represent
differential equations for perturbations of a particular solution of the equations of motion,
and by solving them, we can determine whether these perturbations increase or decrease,
resulting in an unstable or stable solution, respectively. Given the crucial role of the LEM
in studying physical systems, it is essential to approach them in the context of extended
objects. One can achieve this by using the covariant variation method, which involves
varying the system equations of motion along normal deformations, as discussed in the
first section of the previous chapter. If we denote the equations of motion by & = 0, then
the LEM are

(4.1) Ps& = 0.

The Linearized Einstein’s Equations (LEM) for the DNG action in equation (3.32) have
been computed. The calculation process for this particular action was straightforward.
However, when dealing with other actions like Equation (3.35), it becomes a tedious task,
leading to the derivation of significantly large equations [17]. Despite these challenges,
all the methods described in Section 3.1 can be directly applied to linearize the equations

of motion for the brane.

However, there are situations where utilizing the fully covariant formalism from the
ambient space proves to be comparatively simpler. Specifically, when confronted with
higher-order variations, the fully covariant formalism becomes particularly advanta-
geous, offering a more efficient approach to manage the intricate equations implicated in
such scenarios.

Through the investigation of this approach, there is an opportunity to enhance our

comprehension of the Linear Equations of Motion (LEM) and how they can be obtained
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in a manner that is both efficient and systematic. This exploration holds substantial im-
plications for the examination of physical systems and the developed of novel theoretical
models. For this reason, in the next section, we will see that LEM can also be obtained

using this approach.

4.2 Second Covariant Variation and Jacobi Equations

As we know, the equations of motion of a system can be deduced by varying the action.
Remember that the action S is a functional, i.e., it is a mathematical device that, in this
particular case, takes the embedding functions X and results in a number. When we
speak of varying the action, we are essentially introducing new functions X' = X + s(
close to the embedding functions. With s being a small parameter (s < 1), and { being
an arbitrary function. The resulting change in the action is the difference between the
numerical value obtained from evaluating the action for the original and the neighbor

embedding functions.
(4.2) AS = S[X +s{]-S[X],

the variation above is finite, and since the parameter s is small, one can perform an

expansion of AS around embedding functions X, resulting in the following

82 83
(4.3) AS = s6S + 5628 + 5535 +0(sh),
where we have that
dSn s=0

The first variation is the expansion to the first order of the action when a slight change
in the embedding functions is performed. By using the chain rule, this first variation can
be written as

dsS 0XH(x%,s) 0XH(x%,s)
4.5 6S =|— =|—>0,S =\———9,8 =9xS
( ) (ds )SIO ( 0s H )s:O ( 0s H )s:O X

where in the second equality, we have used that the action is invariant under transfor-
mations of background spacetime. Here &y is the covariant variation that was defined in
the section 3.2. Surely the meaning of the second variation for the reader is now evident.

It is understood as the second-order expansion of the action under small changes of its X
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argument functions. It reads as
d?S
()
ds s=0
0XH(x%,s) 0XV(x%,s)
= 9D 2,8
( 0s # ( 0s Y ))s:O
=6X"9,6X 2,8
=DxDxS
=92%8S.

(4.6)

While the practical significance of calculating the second variation of the action may not
be immediately apparent, it plays a crucial role in various physical contexts. Regrettably,
it tends to be overlooked in both undergraduate and postgraduate courses, where the
focus is typically only on the first variation of the action to derive the dynamic equations
of the system. However, the second variation of the action holds great relevance in nu-
merous scenarios. Its importance becomes particularly pronounced when examining the
formation of structures in the Universe or studying anisotropies in the cosmic microwave
background. In the context of brane scenarios, the second variation is indispensable for
analyzing brane stability and understanding the behavior of their intrinsic geometry
under deformation. Additionally, the second variation is critical for assessing quantum
corrections at the one-loop level when considering potential quantization of the system

using the path integral approach.

By equating the second variation to zero while assuming the fulfillment of the equations
of motion, we derive a collection of differential equations that govern the deformations
60X of the system, referred to as the Jacobi equations. In order to preserve covariance
under background diffeomorphisms, we can employ the variational covariant approach
outlined in the preceding chapter and compute the second variation of the action utilizing
the operator Zx. This methodology allows us to obtain the Jacobi equations in their fully

covariant form, which can be expressed as
4.7 FH©6X) =0,

if one projects the Jacobi equations on the basis {rn’,X,}, the tangential projections are
identically zero, while normal projections are reduced to linearized equations that are
covariant under reparametrization of world volume, which were discussed in the previous

section, i.e.
(4.8) n, #H06X)= 258"
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In the second variation of the geometric model in (3.39), We choose to utilize the expres-
sion (3.42) for the first variation. For the sake of simplicity, we assume that the world
volume is no boundaries, 0m = 0, or that appropriate boundary conditions have been
selected, and we neglect the contribution of the Noether current for the moment. Thus,

the second variation can be written as

(4.9) 228[X]= f [2x8,6X* +£,6°X"],
m
where
02X (x°
(4.10) s2x = TEELS)
0s2

Assuming that equations of motion are fulfilled, we obtain
(4.11) 2%S[X 1l = f [2xE,l101] 6X*,

the subscript [0] serves as a reminder that we are considering the on-shell condition. It is
evident that evaluating the second variation is tantamount to linearizing the equations
of motion. It is important to note that, in this context, the linearized equations of motion
preserve covariance solely in relation to the ambient spacetime. Nonetheless, as observed
earlier, it is possible to transform them into covariant equations of motion with respect
to world volume reparametrizations through the application of a normal projection.

In contrast to (3.7), it should be emphasized that when [2x,2,] is applied to a tensor
quantity, the result is nonzero. This is a consequence of the variation operator being a
covariant directional derivative. Here is where background spacetime curvature comes

into play, as shown explicitly below. We have
DxEulio1 = —PxDa P,
(4.12) =-19x,2.1P," — D Dx P."
= R, 0X X0 P, - D Dx P,
We have used Bianchi’s identity (2.4) and remember that [6X,X,] = 0. Therefore, the
second variation, (4.11) , takes the form

(4.13) P%S[X1lo = — f |2ePx P, + Rap OX X" | 6XH.
m

If one uses the linear momentum definition that is given in (3.44), the first term on the

right-hand side of the above expression can be written as its variation or linearization
0&

Dy P = —— Py XV
AT T axyox kT
= H20D.0X”,
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where we have defined the Hessian matrix in the following way

%%
(4.15) geba = — —
Hexyexy

It should be noted that the Hessian exhibits degeneracy, allowing for null eigenvectors,
as a result of the gauge freedom associated with reparameterization invariance. Fur-
thermore, the Hessian possesses symmetry among pairs of its indices, which can be

expressed as follows
(4.16) T = L.
By inserting the equation (4.14) in the second variation (4.13), one obtains

(4.17) D% S[Xloy = - f (Do | 75 (265X")| + Rap OX "X P, "5 XP.
m

At this juncture, 6X assumes an arbitrary nature and denotes a linear perturbation
around any embedding on-shell. Nonetheless, if our interest lies in perturbing from one
on-shell configuration to another, it becomes necessary to select §X* in a manner that
renders the second variation null. Upon inspecting the aforementioned expression, the
equations governing the vector 6 X* become apparent and can be expressed as
~Ry5,"XP 2,0 = 0.

(4.18) AR

To maintain consistency with the notation used in [14, 15], we introduce 6 X* =n*. The
vector 7 is interpreted as the connecting vector between neighboring branes during
their evolution. This concept aligns with the geodesic deviation equation, as discussed
in [7,9, 12, 110]. The first term, (4.18), is second-order, as expected since the equations
of motion are second-order. In classical mechanics terminology, the Hessian assumes
the role of a mass matrix. The second term, which involves the Riemann tensor, can be
understood as an external force. This interpretation aligns with our intuition based on
the geodesic deviation equation in general relativity. In the case of a flat background,
the Jacobi equations take the form of a conservation law, similar to a divergence-free

equation for linearized canonical momentum.

By applying the results obtained for the DNG action, where we have previously computed

its canonical linear momentum in the preceding chapter, we proceed to calculate its
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Hessian for the purpose of evaluating the second variation.

geba = 9 (—(XOETIMYWX?),

T exy
(4.19) = ~a0y/~F | XVX[ + g™~ X] (X5 + "X
= —aoy=g (X2Xg +nug™ - g hy - XEXE),
= —ao\/?(g“bl'[“v +XZ€) ,

where we have defined
_ b
(4.20) X =8"" Xy,
’ XabzXaXb_XbXa
py = A uty v

For this case the Jacobi equations are
V=8 (g“bHW +XZ’5) E'anv] + V=8 Rapupn®hPr} = 0.

Note that the normal and tangential projections of the deviation vector arise naturally

(4.21) @o{D,

in the expression, showing the mixture of both contributions. These equations provide a

generalization to the branes of the well-known geodesic deviation equation for particles.

4.3 Third Covariant Variation

In order to demonstrate the efficacy of a covariant variational approach in perturbation
theory for brane dynamics, we expand our analysis to the third order. Additionally, one
motivation for considering the third variation of the geometric model is the potential
degeneracy of the second-order contribution among strain modes. As anticipated, the
computational complexity noticeably escalates. Nevertheless, employing a covariant
variational approach provides a deeper understanding of the inherent mathematical vari-
ational structure and facilitates its practical application when incorporating second-order
perturbations. Furthermore, this covariant approach elucidates the interplay between

first and second-order perturbations.

Following the discussion at the beginning of section 4.2, it is not difficult for the reader
to understand that the third variation of the action is the third-order expansion of the
finite variation in (4.3). Thus, considering expression (4.11) for the second variation. An

additional variation is given by

(4.22) 2% S[X 1l = f {[2%Euli01] X" + [ 2xEplion] 92X}
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Assuming that both the equations of motion (3.45) and the Jacobi equations (4.18) are

satisfied, then the second term vanishes, and the third variation (4.22) reduces to

(4.23) @;S[X“[O,l]:f (2x8,(L)No1],

In this case, the subscript [0, 1] serves as a reminder that both the equations of motion
and the Jacobi equations are presumed to be satisfied. Next, we proceed to examine the
second variation of the equations of motion. To facilitate this analysis, it is advantageous
to initially consider a flat background where the Riemann tensor is zero. Subsequently,

we can introduce the additional complexity of a curved background.

4.3.1 Flat Background Spacetime

In the specific scenario of a Minkowski spacetime, background derivatives exhibit commu-
tation, enabling us to utilize, similar to the second variation, the fact that the equations
of motion can be expressed as a conservation law. Concerning the linear momentum, the
second variation can be represented as shown in Equation (4.9). Consequently, employing

Equation (3.44), the third variation can be expressed as follows
(4.24) 238X 1lo,11 = f [(2.2%2.%) 6X*] lio,11,
m

Considering the commutation between partial derivatives and variations, we proceed to
unpack the second variation of the linear momentum. Referring to Equation (4.14) for the
first variation of the linear momentum, it is worth noting that when the variation acts
on the first variation of the shape functions 6 X*, it yields a second variation of the shape
functions §2X*. Similarly, when the variation acts on the Hessian matrices of the energy
density, it produces a source term that exhibits a quadratic dependence on the first
variations 6 X*. It is important to bear in mind that the assumption of the satisfaction
of the Jacobi equation is tantamount to assuming the given nature of the first-order
perturbations 6 X*. In this context, we are referring to a source term. Consequently, the
second variation of the linear stress tensor, as obtained from the variation of Equation

(4.14), can be expressed as the sum of
(4.25) 222, (6°X,6X) = 2x 2, (6°X) + £, (6X),

the first term in the expression depends on the second variation 62X and exhibits the
same structure as the first-order variation. It corresponds to the Jacobi operator with 6X

replaced by 62X in Equation (4.14). This term does not necessitate any additional effort
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as the Jacobi operator is already known, as shown in Equation (4.18). The second term
in Equation (4.25) represents a source term that is contingent upon the first variation
0X due to the variation of the Hessian matrix.

0?°Dx &L

(4.26) S0 (6X) = (—
H 0X"oxy

) 2.6X",
this term does necessitate additional effort. By employing Equation (3.41) for 2x %, it

assumes a formidable appearance.

(4.27) S (0X) = TSP 6X " D6 X?,

where we have defined the tensor of third order derivatives analogous to the Hessian

3L
(4.28) Feha -
PR oX [ oXyoX)
Returning to the third variation of the action (4.24), we find therefore that it can be

written in the deceivingly simple form
(4.29) 2%S[X1lo1 = fm {124 (6%X) + 247, (6X)] 6X*} 10,11,
in this equation, the Jacobi operator,

2.(6°X) = 2,252, (6°X),

incorporates the second-order perturbations, while the source term 2,.%, (6 X) depends
on the first order perturbations. Notably, the expression for the third variation reveals
that the higher-order Jacobi equation exhibits a distinct structure compared to the
second-order Jacobi equation. Specifically, it is non-homogeneous due to the presence of

a source term.

4.3.2 Curved Background Spacetime

Now, let’s examine the modification of the third variation (4.29) when the brane evolves
in a curved background, where partial derivatives and variations no longer commute.
We begin with Equation (4.17), representing the second variation with a non-vanishing

curvature term. Introducing an additional third variation, we obtain

2xS[X]lo,11= —f +Raﬁvp5X“e59X?}’p“

m

{20 |2x (75206 %)

(4.30)
+ Dx (Rap 5X b7, |} 5XV,
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where we used the Bianchi identity yet again in the first line. The first term can be
written in terms of the canonical momentum using (4.14)
Dx (AL D0X") = D5,

b b
(4.31) = %"’Vﬂa (2:.6X")(2,6X") + vaﬁ@x (2p6X")

b b

=T g (2:.6X")(2,6X") + vaﬁRvapﬁéX“ciXpef

+ 00D 6° X",
where the tensor 9 is defined in (4.28). In the last step, we commuted the derivative
and the variation producing a background Riemann tensor projection. Let us now use
the Leibniz rule to unpack the third term in (4.30),
Dx (RapSX XEP, | = (DoRap”) 6X5X XL P, + Ropy (62X ") X4,
(4.32)
+Rapy 5X Dy (6XP) 2, + Rap,* 5X XL (2xP,7),
where we applied Equation (3.7) in the second term. It is important to observe that the
presence of numerous curvature terms, along with a derivative of the Riemann tensor,
significantly complicates the expression compared to the scenario of a flat background

spacetime. By substituting Equations (4.32) and (4.31) into Equation (4.30), we get

ﬁfjj (2.6X°)(2,6X")

@g’(S[X] lro,11 = —f {@
m

(4.33) + 70 D0 X + FELIR app 6X“6XPXﬁ]

+ 2R P XP6X D5 P, + (DoRap,”) 6X6X XD,
+Rapy” (62X %) X0 Py + Rop0X " (226X7) 2,7,
As we can see, it is apparent that the first two lines represent a conservation law, specifi-
cally for the second variation of the canonical momentum. Furthermore, there is a term
that is proportional to both the curvature and the first variation of the momentum,
as well as a term that is linear in the second-order deviation vector. Notably, we now
encounter quadratic terms and derivatives of the first-order deviation vector. However, it

is assumed that such a vector is already known.

The vanishing of the previous integral leads to the equation
430 P,[23P,"]+ Rap,PSX XEDx Py + Dx (Rap* SX X0, = 0,

the above equation, we have conveniently expressed it in terms of the canonical momen-

tum to avoid unnecessarily long expressions and to demonstrate the underlying structure
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of the equations, as promised. It is important to note that the embeddings are known
from the equations of motion, and the variation vector 6 X" satisfies the Jacobi equation
(4.18) with n =6X". Equation (4.34) now determines the second-order variation vector

52X". Similar to the previous section, the variation (4.33) can be organized as follows
(4.35) @%S [X]|[0,1] = —f [fﬂ (62X) +9M(5X)] (5X”,
m

where #, is the source term given by

T =Do | T2 (De5XP) (266X") + HLIR 0 5X“5XPX’3]
(4.36) +Rap” 26X X0 76052,6X"

+(PoRap,”) 6X°6X XL,

We can see that equation (4.34) corresponds to a Jacobi equation for the second-order
variation field §2X* with a source term Zu, akin to Equation (4.29). However, in this
case, the source term is modified by the curvature of the spacetime background. It is
worth noting that the expression in Equation (4.34) has previously been derived in
[70], albeit with a focus on normal perturbation modes and direct perturbations in the
equations of motion. Here, we present a fully covariant expression from a variational
perspective. This expression provides a second-order approximation to the deviation of
neighboring on-shell branes in a fixed arbitrary background. Expanding to second-order
perturbations is not only a natural progression following the first order but also serves to
overcome degeneracies that arise at the first order. Moreover, certain physical quantities
exhibit a leading second-order contribution. For a more comprehensive list, refer to, for
instance, Ref. [75].

We can apply these results to the example of DNG action. For this, we need to obtain the
tensor J defined in (4.28). When the algebraic dust settles down, we obtain

(4.37) gcba ,Lt\/—[ vr( cha 2gach)+2H'uT(gach gabXs_gcha) Xabc]

™vU HvT

where there is an abundance of raised and lowered indices, and now we have a tangential

antisymmetric trivector

(4.38) Xxabe . 37X["XbXC]

3%

Putting it all together, we use the expressions (3.47), (4.19), and (4.37) to insert them
into (4.35), taking into account (4.36). Then, we can write the full third variation for the
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DNG action

2%SpNnelio =fm {ju (6%X) +u2, \/——(HW (gbCXZ _2gabXZ)
200, (g% XE - g0 X - g% X 8] + X180 ) (2.6X") (260X )
Vg (gabnw +X5§)Rvapﬁ5X“5XPXf]
+ /=8 (PuRapup) X OXRPP + 1y/=gRap,”
x |20X° X0y (6X") (2T + X 52

(4.39)

+0X D, (6XP|n g™ XY |} 5X.

Of course, the vanishing of the last integral gives us the second order perturbation to the

equations of motion

2u(0°X) = p{%a | V=2 (Mir (8% X[ — 28" X5) + 200,y (g% X0 - g™ X ¢
~g"X2) + X1 (2.6X") (256X")

3%

V7 (8 T+ X RV X0 XPX |
+v=8Rap,”
+6X°9, (5Xﬁ) Novg“ X!

(4.40)

26X°XP 2, (6X") (g‘”’Hpv +X50 )

+ V=E (DReapyp) X 6X hPP},

In this case, ¢, (52X ) corresponds to the left-hand side of Equation (4.21), with 6X —
52X . The right-hand side of Equation (4.40) represents the source term in Jacobi’s non-
homogeneous equation. Notably, the source term is influenced by the Riemann tensor
of the background spacetime and its covariant derivative. One might assume that the
covariant derivative of the Riemann tensor should vanish since the background spacetime
is fixed. However, when introducing variations, local changes in the embeddings must be

taken into account, which justifies the inclusion of this term.

4.4 The Covariant Simultaneous Action

This section presents a covariant simultaneous action for branes in an arbitrary curved
background spacetime. Here, we show an action that depends on a pair of independent
field variables, the brane embedding functions, through the canonical momentum of
a reparametrization invariant geometric model for the brane and an auxiliary vector

field. The form of the action is analogous to a symplectic potential. Extremization of the
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simultaneous action produces at once the equations of motion and the Jacobi equations
for the brane geometric model, and it also provides a convenient shortcut toward its

second variation.

The conventional variational approach involves considering the first variation of the
action concerning an infinitesimal variation of the fields, which in this case are the
embedding functions. By setting this variation to zero under appropriate boundary condi-
tions, we obtain the equations of motion for the brane. The second variation of the action,
assuming the satisfaction of the equations of motion, leads to a quadratic form that
determines the stability of the field configurations. Furthermore, the vanishing of the
second variation yields the Jacobi equation for the brane, known as the geodesic deviation
equation in the case of a relativistic particle. The simultaneous action encapsulates these

principles concisely and elegantly.
(4.41) SslX,nl :f P Dt
m

It is important to mention that we denote simultaneity with the subscript S. In Equation
(4.41), the two independent fields are X* (x%), representing the world volume embedding
functions, and an auxiliary vector field n* (x®). The operator 2, corresponds to the same
covariant derivative defined in subsection 2.1, and the linear momentum 22, is given
by equation (3.44). It is worth noting the analogy between the term inside the integral
and a symplectic potential of the form pdq. The symmetries of the simultaneous action
include world volume diffeomorphisms, or reparametrization invariance, as well as a
constant translation of the auxiliary field. Additionally, the action remains invariant
under background diffeomorphisms, or Poincaré transformations in the case of a flat

Minkowski background, given that it is a scalar.

The first variation of the simultaneous action with respect to an infinitesimal vari-
ation of the auxiliary field n* — n* + 6n*, where dn* denotes a infinitesimal change,
keeping the embedding functions fixed, is simply

m m m
in the given equation, we have performed an integration by parts and, for simplicity,
temporarily omitted a boundary term. The vanishing of this first variation under an
arbitrary variation of the auxiliary field, 6,5 [X,n]|x = 0, thus leads to the equations of

motion for the brane.

(4:.43) éa'u = _@at@#a = O.
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It is important to highlight that this aspect of the simultaneous variational principle
is independent of the specific model and does not rely on the particular form of £ (X, o ).
Instead, it capitalizes on the fact that the equations of motion can be expressed as a
conservation law [3, 25]. This conservation law is essentially a dimensionally reduced
version of the conservation of the stress-energy tensor in relativistic theories.

Shifting focus to the variation of the simultaneous action concerning a variation of
the embedding functions, X* — X* + 6X*, we employ the same covariant variational
derivative as in Equation (3.37). The notable advantage is that 2xn,, = 0 since the
background covariant derivative is metric compatible. With the auxiliary field n* held

fixed, we obtain
(4.44) DxS [X,1]ly = f (@xP,) D + P, Dx D).
m

By utilizing the definition of the canonical momentum given in Equation (3.44), the first

term can be written as

52
(2xPu") Dt = —=z
(4.45) 0X,0X,

= 750 (Dx X}) Dan* = €52 (266X") Dan”,

(2xX;) Zan”,

where we have defined the Hessian in (4.15) and in the second line we have used the fact
that variation and partial derivative commute, 2x X Z =92,6X". Note that the Hessian is
degenerate, meaning it possesses null eigenvectors. This is a result of the gauge freedom

associated with reparametrization invariance.

To derive the second term in Equation (4.44), we consider the dependence of the co-
variant derivative on the embedding functions and make use of the Bianchi identity.
Additionally, we take into account the independence of the field variables X* and 7,
specifically that Zxn = 0. This allows us to obtain the following expression

(4.46) P DxDan’ = Py [Dx,DaIn* = —Rp M6 XP X" 2,°.

Inserting (4.15) and (4.46) in the variation (4.44) results immediately in

(4.47) 2xS [X,n] Iy :f [%OVZ’S (226XY)Dan! —Rpo HOXP XTI 2% |.
m

At this stage, by identifying the auxiliary field as the variation of the embedding func-
tions, n* = 6 X*, we have successfully obtained a concise and general expression for the

second variation of the geometric model (3.39). This highlights the advantage of the
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simultaneous action approach, especially when compared to more laborious approaches
found in the literature. Furthermore, the significance of the Hessian becomes apparent
as it plays a central role in the formulation. In order to derive the Jacobi equations for
the brane, one simply needs to integrate by parts the first term in (4.47), neglecting a

boundary term. This procedure yields

(4.48) DxS[X 1] Ip=— fm (|25 (752 Dan) |+ Rogp XI0P 2,716 X ",
the vanishing of this variation gives the Jacobi equations for the brane
(4.49) |2 (#82Dan)] + Ruop XS0 2,7 = 0,

To summarize, the simultaneous approach allows us to derive both the equations of
motion for the embedding functions and the Jacobi equations for the deviation vector. It
is interesting to note the interchange of tasks: the variation with respect to the deviation
vector yields the equations of motion for the embedded functions, while the variation
with respect to the embedding functions yields the Jacobi equations for the deviation
vector. An added advantage of the simultaneous approach is that there is no need to

manually impose the evaluation of the Jacobi equation on-shell; it happens automatically.

To illustrate the general formalism, let us consider the DNG model (3.29) in an ar-
bitrary curved spacetime background. This can be compared to the more conventional
treatment presented by Carter in a covariant approach [23]. Although the conclusions
are the same, they are expressed in a different manner. By employing the DNG canonical

linear momentum in (3.47), the simultaneous action (4.41) takes the following form

(4.50) St e X, = —ao f VE N X} Dartt.
m

By setting the first variation of this simultaneous action with respect to n to zero, as
depicted in Equation (4.42), we obtain the DNG equations of motion, which are analogous
to Equation (4.43).

(4.51) - DuP," = a0 Pa (V=& e X)),
its normal projection gives
(4.52) - n“i@a@pa = —ao\/—gKi =0.

As previously mentioned, this corresponds to the relativistic formulation of the equilib-

rium condition for a minimal surface with an arbitrary codimension.
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Now, let’s proceed with the variation of the simultaneous action concerning a variation of
the embedding functions. To obtain the expression for the Hessian defined in Equation
(4.15), we need to perform a short calculation. Taking into account Equation (4.19), we
find

(4.53) 58 = ~aoy=g (g T + X52),
Inserting (4.53) in the first variation (4.47) gives immediately

DxSSpye [X’n] ln =~ 060[ V=8 [(gabnﬂ" +Xﬁ€) (@b6XV) Dan"
m

(4.54)

If at this point we identify the auxiliary field n* with the variation of the embedding
functions 6 X*, the above expression represents the second variation of the DNG action
considering variations of the embedding functions. By integrating the first term by parts

and disregarding a boundary term, we obtain

Dx8 [X 1] |,,:a0f{@b,/——g (87T, + X32) 2an| 57
m

+ AV _g Rpavu(sXphU”nv}.

(4.55)

Setting this variation to vanish, 2xSg, . [X ,17] l, = 0 gives the Jacobi equations for the
DNG brane

(4.56) 00Par/—8

(g“bHW +XZ€) @anﬂ] taoy—8 Rvayphgpnu =0.

The first kinetic term in the Jacobi equations differs from the case of a particle due to
the presence of a "friction" term caused by the tangential bivector. It is worth noting
that these Jacobi equations have been derived before in a different, yet ultimately
equivalent form in the work of Pavsic [91]. These equations provide a generalization of
the well-known geodesic deviation equation for particles to branes. In the special case
of a relativistic particle, which corresponds to a degenerate brane of dimension zero,
the simultaneous action was introduced by Bazanski in [8, 9], building upon a general
formalism developed in [7].

In conclusion, this section has introduced a covariant simultaneous action that, for any
reparametrization-invariant local geometric model describing a relativistic brane, yields
both the equations of motion and the Jacobi equations for the model simultaneously.
Moreover, the action provides a convenient shortcut for studying the second variation of

the geometric model, offering an alternative path for stability analyses. The simultaneous
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action can be readily extended to incorporate additional fields residing on the brane or
include "pressure terms" that arise in fundamental branes. However, it is important to
acknowledge that such extensions would impact the simple elegance of the covariant
simultaneous principle, yet they would be valuable in scenarios where external forces

are relevant.
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CHAPTER

VARIATIONAL ANALYSIS OF GODETIC BRANE GRAVITY

n the last chapters, we have discussed the variation of the functional action of a
general system by using both variations along only normal vectors and arbitrary
variations. We also reviewed how to calculate the LEM of a system, and we dis-
cussed their different utilities. In this chapter, we will apply the majority of these viewed
tools to meticulously analyze a geometric model known as the Regge-Teitelboim (RT)
model, which we also refer to as Geodetic Brane Gravity (GBG). This chapter is primarily

based on the paper Jacobi equation of geodetic brane gravity.

5.1 Regge-Teitelboim model

In the 1970s, T. Regge and C. Teitelboim introduced a geometric model for our universe,
considering it as the world volume of a three-dimensional brane evolving geodesically
in a fixed higher-dimensional background Minkowski spacetime. Their motivation, as
indicated by the title of their proceedings contribution "Gravity ’a la string: a progress
report,” was closely related to string theory [95]. The action they considered in their
geometric model is equivalent to the Einstein-Hilbert action of general relativity. How-
ever, the crucial difference lies in the choice of field variables. Instead of the spacetime
metric as in general relativity, the Regge-Teitelboim (RT) model employs the embedding
functions of the world volume as the field variables, making the world volume metric a
composite field variable. The equations of motion of the RT model are second-order in

derivatives and weaker than the Einstein equations. This characteristic of geometric
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models with second-order equations of motion is shared by a broader class of models, in-
cluding Lovelock branes, to which the RT model belongs [4, 30, 53]. While all solutions of
the Einstein equations are also solutions of the RT model, the solution space of the latter
is more extensive [74, 90, 106]. The additional part of the RT model can be interpreted as
"geometric dark matter" [32], providing an alternative perspective to the ongoing efforts
to describe dark matter/energy by incorporating exotic terms in the energy-momentum
tensor [11, 27], or modifying the geometric sector through theories like f(R) theories
[33, 81, 103]. In this context, it is noteworthy that the inclusion of a world volume
cosmological constant is equivalent, from a brane viewpoint, to incorporating a DNG

term in the action.

It is worth emphasizing that, from a basic geometric standpoint, the local existence
of an embedding framework requires a maximum of N + 1= (p + 1)(p + 2)/2 dimensions
for the ambient spacetime background. For instance, for p + 1 =4, a maximum of 10 di-
mensions is necessary. Furthermore, if the world volume metric possesses Killing vectors,
this number can be further reduced [20, 45, 64, 97]. It is important to note that not every
solution of the Einstein equations can be embedded as a hypersurface. For example, the
embedding of the Schwarzschild solution necessitates at least a co-dimension of two
[67, 87]. This serves as a significant motivation to consider arbitrary co-dimensions, de-
spite the increased complexity it entails. Naturally, this has implications for the stability
of such geometric configurations, as it becomes necessary to analyze the conditions for
their stability. In particular, higher co-dimensions require the utilization of geometric
structures that account for the rotational freedom in the normal fields to the world
volume. Surprisingly, this aspect has been overlooked in many discussions of the RT

model and does not appear to have been addressed previously.

The RT model involves the integral over the trajectory of a p-dimensional brane X,
which depends on the scalar curvature % of the world volume m obtained from the

induced metric g,,[95],

1
(5.1) SRT[X,(PM]:[ V=8 §@+LM(<PM,X) ,

where x is a constant, typically set to x = 871Gy to relate it to general relativity. The
field variables are the embedding functions X#(x%) and the matter fields ¢p(x?) living
on the brane, with a matter Lagrangian L/ (¢3r,X). We assume the world volume to

be without boundary for simplicity. The symmetries of the action include world volume

42



5.1. REGGE-TEITELBOIM MODEL

reparametrizations, the Poincaré symmetry of the background Minkowski spacetime,
and invariance under rotations of the normal vectors adapted to the world volume, as
p+1<N+1.

The equations of motion for the RT model can be obtained by varying the action Sgr
using either the variation @:3, which is along normal vectors only, or the arbitrary co-
variant variation Py, which yields covariant equations under transformations of the
background spacetime. Another approach is to construct the simultaneous action for this
model, which allows us to derive the dynamical equations by varying it with respect to
the auxiliary field 7. The choice of variational methods depends on the specific model
and the most appropriate approach for studying it. For example, the Px variation is
efficient when the spacetime is curved, as it utilizes the Ricci identity and reduces the
complexity of calculations. Additionally, the resulting equations are invariant under
diffeomorphisms of the ambient spacetime, making them useful for studying the system
from an external perspective. However, in the case of the RT model, where the ambient
spacetime is flat and the equations should be invariant under Poincaré transformations,
the advantages of the Px variation are somewhat reduced. Nevertheless, we will use it

in the RT model as an example to demonstrate its application.

The first variation of the action (5.1), using 2x, reads

V. &(/ gL
[—g Gab+—( gLu) Dx g
2x 5gab

1
- f VoE [Gap - kTap] X*- 206X,
KJm

DxSRT :f
m

(5.2)

in this context, G, represents the Einstein tensor of the world volume, and 7', is the

6(y/=8Ly)
§gab

have used the variation of the inverse metric and the symmetry of G,; and T, under

energy-momentum tensor defined as T, = -2 . In the second line of (5.2), we

index exchange. After integrating by parts in (5.2) and considering appropriate boundary

conditions, we obtain

V=E (G -xT*) X, | -5X,

by extremizing the action, 2xS =0, we get

1
(5.3) DxSRrr = ——f Da
KJm

(5.4) - %ab [E(Gab - KTab)Xg] -0,

note that directional covariant derivative &, is reduced to d, because of null curvature

of background spacetime. Because the divergence of Einstein and energy momentum
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tensor vanishes then the last equation can be written as
1
(5.5) -—Vg (G“b - KTab) VX" =0

Using the Gauss-Weingarten equations (2.11a) and (2.11b) we have that tangential
projection of the equation of motion (5.5) is identically zero. However, if one takes the

normal projection of (5.5), this is reduced to
1 ab ab i
(5.6) /=g (G —«T )Kab -0
K

Another way to arrive at this equation is through the variation of the simultaneous
action, which was discussed in section 4.4. Remember to build such action it is important

to calculate the momentum 2,* defined in (3.44). For this case, we have
(5.7) P, = %@ (Gt —xT?) x4,

thus the simultaneous action reads

(5.8) S$) = fm VE 0 - X0,

so if one varies the simultaneous action concerning auxiliary field 7, it is obtained

1
0S5y =~ f | v=&nu (G - x7°%) X1 Gb0n”
m

69 1 b b u
== fm |V (G - xT) v, X1

on”

where we have done a integration by parts in the second equality, then, taking 58%3 =0,
one obtains the equations

(5.10) E(G“b - KTab) VX =0

as we saw if these equations are projected along tangent fields then these vanish. How-

ever, if we project them along normal vector the resulting equations are the same to (5.6).

Lastly, one can also use the covariant variation 95 to obtain the dynamics equation of

extended object, by taking @5 = 0.

@5SRT=f Ds

m

1
V=g |—2Z%+L
g(ZK " M)]
1 ~
(5.11) =5 f V=8 [Gap —xTap]1P58%°
1 .
= ;f V=8 [Gap —«Tep1 K¢,
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where we have used the variation of inverse metric (3.11) in the last equality of (5.11).
Thus, if one takes into account that the variation of action is zero for any field variation

¢', we have
(5.12) & =(Gap —xTap)K*; =0,

these equations are of second-order in derivatives of the fields X*, with the extrinsic
curvature tensor playing the role of an acceleration. This type of gravity has a built-in
Einstein limit since every solution of Einstein equations, G4 — kT4 = 0, is necessarily a
solution of geodetic brane gravity. On the other hand, equations (5.12) are weaker, in the

sense that a more general solution of the form G, — kT = 745 may exist as long as
(5.13) 15K, =0, and 7,4 #0.

Indeed, it has been suggested in [66] that the geometric structure 7,5 can be interpreted
as a non-ordinary matter contribution, often referred to as "dark matter," as it is distinct
from the standard matter contribution represented by T';. It is worth noting that in
the absence of matter, akin to classical string theory, the equations of motion (5.12) can
be seen as a generalization of the condition for extremal surfaces. This generalization
manifests through the vanishing of a trace of the extrinsic curvature, where the Einstein

tensor G, assumes the role of the induced metric.

5.2 Jacobi Equation of RT Model

In the previous section, we have used the three different ways, which we reviewed in
the last chapters, to obtain the equations of motion of the RT model. However, as we
mentioned, each of these methods may be more appropriate than another depending on
the geometric model. This also happens when calculating the Jacobi equations of the

system.

Let us remember that the RT model tries to describe our universe, where one assumes it
is a brane embedded in a larger flat spacetime. Thus, one would like to have equations
that are covariant under the reparametrizations of the brane world volume . Using, for
example, the covariant variation YPx to calculate the Jacobi equations of this system
is hugely laborious. Because firstly, one should calculate the second variation of the
action, @;S rT =0, taking into account that the equations of motion are satisfied. The

Jacobi equations ##(6X) =0, which are covariant under diffeomorphism, are obtained.
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However, remember that we want equations that are covariant under reparametrization
of m, then, additionally one has to project to _##(6X) = 0 along normal vector.

On the another hand, if one uses the simultaneous action to obtain the Jacobi equations,
one has to vary concerning embedded functions and also project along of normal fields.
Then, for this particular case, it is more convenient to use a direct approach, by using
the covariant variation 95 and taking into account the variation of fundamental forms
as induced metric and curvature extrinsic tensor, see (3.10) and (3.23).

As formally discussed in the section 3.1, for co-dimension higher than one, the application
of the normal deformation operator Ps to the equations of motion together with the as-
sumption that the equations of motion &° = 0 are fulfilled, afford the linearized equations,
and we obtain the Jacobi equations that are covariant under reparametrization of world

volume. Hence, we focus on the expressions
(5.14) D5 (Gap K™ ~xT™Kgp;) = 0.

Not all solutions of the equations of motion (5.12) lead to stable configurations of the
extended object. In this sense, the Jacobi equations provide conditions to explore this
issue. Certainly, their solutions, also named Jacobi fields, help us to understand more
deeply how the geometry behaves under deformations of the embedding functions in the
background spacetime. Since we are interested in obtaining a covariant expression for
such equations, a convenient strategy is to directly linearize the equations of motion
(5.12).

To evaluate the variation @5(GabK“b i), we will break it down into several steps for
clarity. Starting with the explicit expression of the world volume Einstein tensor, we find

that it can be written as follows
_ 1 1 _
Ds (GabKabi) = (—@Kabi ~ = Rap K +2G K i | D58°° + G DsK 4
(5.15) 2 2 .
+ K, Ds Rty — iKigab%%ab.

Before proceeding further, let us calculate the variations involving the Ricci tensor. We
can express the Ricci tensor %, in terms of the extrinsic curvatures using equation

(2.19a). After performing a direct calculation, we obtain the following expression

(5.16) gD Ryp = 2 (gabKj _ Kb J-) DsKap' + Rap D58,

(5.17) K PsRap = (8P K iKea; - 2K K oj + K™ K| DoKap’ + RacbaK iP5
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Inserting these expressions into (5.15) yield
o ab cd 1 c ab
Ds (GabK i) =|RacbdK""i = RapKi + §%Kabi +2Go Kpi| D58
(518) [KLKabJ + KjKabi _KaciKbcj —KaCijci
~g* (Kin _KCdichj) + Gab5ij] DsKap’,
in turn, this expression suggests to introduce the geometric tensor
(6.19) 6%y =KK™+ KiK™; ~ K K" - K ¢jK"; - g (KK~ K* K qj).

Note that it is symmetric in both pairs of indices Geb,; j= Gbe; j= Gob ji
An important fact that will be utilized later is that this tensor, which is quadratic in the

extrinsic curvature, is divergence-free with respect to the tangential indices.
(5.20) VaG®;;=0

This is not self-evident, and it requires the use of the contracted relations (2.19), as
shown explicitly in Appendix A. Note that for a hypersurface, using the contracted
Gauss-Codazzi equations (2.19), G®%%jj takes the simple form G*® = 2G?°, a fact that
emphasizes its geometrical nature, for codimension higher than one. By inserting (5.18)

into (5.14), and taking into account the definition (5.19), we get

520 6%+ (G kT 61| DoKap’ ~ <Kapi D5 T
. + (%acbdKCdi ~RabKi + R Kpei +Gachci)@6gab =0

The variations given in (3.11) and (3.27) are reduced due to flat background spacetime
(5.22) PD58°" = -K;¢',

(5.23) DsKap' = Vo Vpd' + Koo KCp b’ .

At this stage, we are ready to insert the needed normal deformations of the first and

second fundamental into (5.21) to obtain

Gabij + (Gab —KT‘”’)(SU-

(5.24) 6aﬁb(/)j + {2 (%acbdKCdi - %abKi + ggachci
4 GuaKpei) K -

6™+ (Gab - KTab) 5if] KoKy 1 +xKapi D5T = 0.

To provide a concise representation of the structure of these equations, which can appear

daunting in both form and content, it is helpful to introduce the tensor
(5.25) Mabij:: Gabij+(Gab—KTab)5ij,

47



CHAPTER 5. VARIATIONAL ANALYSIS OF GODETIC BRANE GRAVITY

by virtue of this definition, we have the useful identity

(5.26) M Ko K b1 = (@acbdKCdi ~RabpKi+Ra Kpei + Gachci) K,
~kTo Kpei K1,
that coincides with the terms appearing on the r.h.s. of (5.24) This identity allows us to

rewrite (5.24) in a compact form as
527) MV Vp¢ + (MK, Ko + 2K Ta Kpei K™ j| ¢ + KK i 25T = 0.

These equations represent the Jacobi equations for geodetic brane gravity, describing
small deformations of the worldvolume in the normal direction. When arbitrary matter
fields confined to the worldvolume are included, the dynamics of the Jacobi fields are
affected by the derivatives of the matter fields. It is important to note that (5.27) are
second-order partial differential equations for the unknown functions ¢, a characteristic
feature of brane theories with second-order derivative equations of motion [4]. The
solutions to the Jacobi equations provide insight into the stability of the system through
the nature of the normal modes </>i, and appropriate boundary conditions must be
considered. However, in the case where there are no brane matter fields (7,5 = 0) and
assuming the equations of motion are satisfied, we obtain a more concise and elegant
expression for the Jacobi equations in a pure RT geometrical model. In this case, we

define a new tensor

(5.28) M =G+ GO,
we can write (5.27) in the form

(5.29) MV V! + ¢ =0,
where we identify a geometrical “potential”

(5.30) Vij = MK Kpej.

The resemblance of (5.29) to a set of Klein-Gordon equations is remarkable. It is worth
noting that the matrix structure (5.30) is symmetric in the normal indices. This arrange-
ment opens the possibility of formulating an auxiliary variational problem. Moreover,
under these conditions, we observe that the "mass matrix" M??; j is divergence-free, as
can be deduced from the geometric identity (5.20) and the divergence-free property of

the Einstein tensor.
(5.31) Vatl®;;=0.
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The accessory action can be written then as
1 SO .
(5.32) Swalgl=—3 [ V[0 Tu0 T ~Tij0107].
m

Up to a boundary term, variation with respect to the normal deformations gives the
Jacobi equations in the form (5.29) as its Euler-Lagrange equations. It is interesting
to note that the accessory principle, up to factor of one half, gives the index of the RT

geometric model,

(5.33) Trrlg] = f T, ).

As all accessory variational principles, (5.32) is a quadratic expression in the field vari-
ables. This property renders it amenable to quantization using a path integral approach,

enabling the study of the effect of quantum fluctuations [115].

Regarding the hypersurface case, by considering the reductions G*® = 2G*® and .« =
3G??, the Jacobi equations (5.29) specialize to

(5.34) G (Vo Vpp + K Kpep) = 0.

This result aligns with the findings in [4], where the RT model is regarded as a specific
instance of Lovelock branes. It is evident that the Jacobi equation (5.34) can be derived

from the extremization of the action functional.

1
(5.35) Slel =~ f V=g [Gabva(va(P_GabKachc(P2 :

When the action is varied with respect to the ¢ field, it yields the following result. If
we consider a worldvolume in which G,;, ~ g,», meaning it is an Einstein manifold,
the action reduces to that of a massive scalar field, where the variable mass term is
proportional to K,; K. This outcome is equivalent to the linearization of the equation
in the DNG model in a flat background, as demonstrated in [56].

Another interesting case is provided by the inclusion of the DNG action, playing the
role of a cosmological constant A, in our development. In such a case, L, = A so that
Tup = Agap. The form of the Jacobi equations, (5.29), remains unchanged except that the

matrix M??; j now becomes
(5.36) Mabij:Gabij+(Gab—KAgab)5ij.
Notice that we still have at hand the divergenceless property V,M??; ;i=0.

49



CHAPTER 5. VARIATIONAL ANALYSIS OF GODETIC BRANE GRAVITY

5.2.1 Linear stability of Schwarzschild geometry in ./°

To illustrate the formalism developed earlier, we consider the case of a Schwarzschild
geometry for the worldvolume embedded in a 6-dimensional Minkowski spacetime, .45,
without any brane matter fields. It is worth noting that embedding a Schwarzschild
black hole in a flat background requires at least a co-dimension of two. It is important
to mention that a Schwarzschild solution in general relativity automatically satisfies
the equations of motion (5.12). We utilize the Jacobi equations to analyze its linear
local stability. For the specific case with G, = R,p = Ty = 0, the Jacobi equations (5.29)
simplify to the following form

(5.37) 6 (Vo Vpp; + Kaes K 19' ) =

Among the different embeddings for a 4-dim Schwarzschild geometry, see e.g. [87], we
choose to consider the Fronsdal embedding [46] given by

R t
X'=2R|/1-— sinh —),
» M aR
| R t
X2=2R\/1-= h—)
rCOS 2R ,
5.38 R\?
( ) f\/—+ —) dr,
r

=rsinfsing,

X5 =rsinfcoso,

X6 = rcoso,

The coordinates {¢,r,0,¢} represent the local brane coordinates, and R corresponds to
the event horizon. It is important to verify that the embedding functions satisfy the
correct conditions. To do so, one can calculate the components of the induced metric using
(2.7) and confirm that they match the Schwarzschild metric in spherical coordinates
[100]. Similarly, by employing (2.8), we can determine the two normal vectors and
subsequently obtain the non-vanishing components of the extrinsic curvature tensor for
this parametrization (5.38). Specifically, we find that the components of two extrinsic

curvature are
Kqp* = diag(0,ba’ —ab’,—rb,~rbsin?0),

(539) X 9 " ,}/2 2(ZR2 aR2 aR2
=aag|— ) s [ ’
ab g 2Ra’ r3 —Rr2 r rsin2
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5.2. JACOBI EQUATION OF RT MODEL

where we have introduced

3
e=\"3.2 2. p3’
r°+r‘R+rR4*“+R

(540) b—\/ R(r2+rR —|—R2) 1

"\ B +r2R+rR2+R3’

R
Y=1/1-—.
V r

By considering the ansatz ® = e '“'Y;,,(8,¢)p(r), where the normal deformation field is
® = (¢!, ¢?), and p is also be considered as a vector field, p = (p', p?), the Jacobi equations
(5.29) are separable, and can be written as a matrix arrangement of radial equations in

the form
(5.41) Ap" +Bp' +(C-w’D)p =0,

where p' = dp/dr. Here, A, B, C, and D are 2 x 2 matrices that depend on the radial
coordinate r. Their explicit components are given in Appendix B. It is worth mentioning
that the matrix C is the only one that contains the angular momentum information
through /. Multiplying equation (5.41) by D!, and introducing the tortoise-like radial
coordinate r, = [(dr/fg) with fg = br2y%/v/3aR?, and considering p = My, where M is a
matrix defined in such a way that the term proportional to d y/dr. vanishes, for more
detail on calculus review Appendix A. Then, the system of equations (5.41) acquires a
form familiar in black hole theory stability analysis

d?y
dr?

*

(5.42) +wly-Vy=0,

where, as in (5.41), y must be understood as a vector. The matrix potential V is explicitly
expressed in terms of matrices B,C, and, D in Appendix A. The system of equations
(5.42) describes a system of coupled harmonic oscillators with quasi-normal frequencies
w = wg +iw;. By examining this frequencies w, we can investigate the stability of this

configuration.

Regarding the asymptotic behavior of the fields, at spatial infinity for non zero an-
gular momentum, / # 0, the diagonal components of the potential matrix V diverge.
Therefore, it can be assumed that the field y tends to zero as r approaches infinity. On
the other hand, at the event horizon R, the matrix potential V vanishes. As a result, the

solution to the equation takes the form y ~ e *“7* + ¢“" where the exponential term
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with a minus sign represents an incoming wave while the one with a plus sign represents
an outgoing wave. However, since nothing can escape from the black hole, the presence
of an outgoing wave is not permissible. Thus, the field y must have the form y = e *“ .

By substituting this expression into (5.42), we obtain the following set of equations

d d
We divide this equation by f,, and then multiply it by u/T so that we get
dy
5.44 2iwy’ == —y'V,p =0
644 dr(fgd) v TV VeV =D

where V, = V/f,. Now, integrating by parts (5.44), and taking into account that y(oco) =0
and f4z(R) =0, we obtain

o0 dy|> . .dy
(545) L dr fg E + 21,(1)1’[/1-5 + wTVgW =
The transpose and conjugate operations applied to the last equation result in
d dy'
(5.46) f dr|fg|5 ”’ —2iw*diw+w*vz,u/ =
R r

We proceed to integrate by parts the second term of the previous equation, and then we
take the difference of the result with (5.45). We get

*° ok + I_i T R V4l _
(5.47) fR dr | -o" W'y -2y (Vg Vg)w -
From (5.47) we can solve for vy’ and substituting this in the (5.45), we obtain
. P) 2
00 L Iy SR R N1 ol @)
(5.48) fR dr | fe|v/| oV (Vg Vg)w+2u/ (Vg+vg)w =

where we assume that wy # 0. If the integral in (5.48) is positive definite, then the
imaginary part of frequency must be negative, that is an indication of having stable
deformations of this black hole geometry. Indeed, since the first term in (5.48) is positive,
it only remains to analyse the nature of the second term
I,a)R 1
Vs s V/T (Vg_VL)W"‘ EWT (Vg"‘VL)U/

ly1yal

=Vqe11 |1!/1|2 + Vgoo |1!/2|2 - '(Vglz +Vgo1) + 2—}; (Vg12— Vgo1)

2

(Vg12 +Vgo1)Wa| +|Vgi2+ Vga1|lw1val

2) (lel

in
— (Vo0 -V.
L4} 2w1( g12 g21)W2

(5.49) +{ya ]+
2

1
— 1= = (Vg12+ Vga1) w2

3 507 (Vg12 Vgo1) W2

)

Vgarllyiyal -
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where a matrix multiplication has been performed in the second line, and we have used
the triangle inequality. Note that the two terms that appear in the parentheses are
positive definite. Therefore, the sign of v depends strongly on the values of V11 and Vigoo.
In this sense, v could be negative if V,11 and V92 are both negative enough. Indeed, to

illustrate this fact, in Figure 5.1 we show the functions Vz11 and Vg for / =1 and R = 2.

Vg22

-0.02+

-0.04 -

-0.06 -

Figure 5.1: V411(r) and Vgoa(r) for I =1 and R = 2.
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This observation suggests that for r > 2, there may exist negative values of V411 and Vg9,
indicating the potential presence of frequencies with positive imaginary parts associated
with unstable oscillation modes. However, this analysis alone is not conclusive as the
overall positivity of the integral in (5.48) needs to be determined. To further investigate
the frequencies, numerical methods are a suitable strategy. Various numerical techniques
have been employed in similar problems, including continued fraction and series methods
[44, 62, 84, 85], among others. The choice of method depends on the asymptotic behavior

of the potential at spatial infinity and the event horizon.

In our case, the matrix potential V behaves similarly to the potential of a Schwarzschild
black hole in anti-de Sitter spacetime in the respective regions. Thus, we can refer to the
numerical method employed in [62] for guidance, as they performed a similar analysis.

In their work, they used a Taylor expansion of the components of the field y given by
(5.50) Xi = e_i“’r*Za(ni)(w)(r—R)n,
n

by substituting this expansion into (5.42) and performing a Taylor series expansion

around the event horizon, we can obtain a set of algebraic equations. Solving these
equations order by order allows us to determine the coefficients a(ni)(w). It is important to

note that these coefficients depend on the initial coefficients a(Ol) and aBZ). The solutions

can be expressed as

_ @ (1) 2 ,(2)
Xi=ay'xy tayg X1

(5.51)
1,1 2) (2
re=ag 1y +ag 1y -
The solutions for )((il) are obtained by considering af)l) =1and ag) =0, while the solutions

D

for )((iZ) are obtained by setting af’ = 0 and a” =

1. In order to satisfy the condition that

these functions must be zero at spatial infinity, we require

1) (2)
(5.52) det|'1) A1 =0.
s s

lim, .

Hence, the oscillation frequencies can be determined by finding the roots of equation
(5.52). The procedure described in (5.52) can be implemented using software such as
MATHEMATICA, as demonstrated in Appendix C, allowing us to compute the lowest
eigenfrequencies for different values of / and R. Specifically, by performing the variable

change r — Rr in (5.42), we obtain the values presented in Table 5.1.

54
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l RwR RLU[
1 ~0 0.83
2 101 0.36
3 1.62 0.56
4 245 0.75

Table 5.1: Frequencies for different values of /.

The real part wg corresponds to the oscillation frequency of the deformation, while the
imaginary part wy is related to its decay or growth. It is worth noting that the imaginary

part of w is always positive for any value of R. These frequencies correspond to unstable

deformations, as the field ® behaves as ® ~ e

—iwt

, which diverges when ¢ — co. While a

four-dimensional Schwarzschild black hole is stable in general relativity [96, 109], our
findings indicate the presence of linear instabilities in the embedded Schwarzschild black
hole that satisfies the geodetic brane gravity equation. Similar instabilities have been
observed in the study of higher-dimensional black holes [55].
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CHAPTER

REGGE-TEITELBOIM MODEL AS A SINGULAR
SECOND-ORDER SYSTEM

n this chapter, we will address the study of the Regge-Teitelboim model as a second-

order singular system. We will heavily rely on the theory presented in Appendix E

. Additionally, several of the variation concepts introduced in the first part of this
thesis will be utilized. Overall, this chapter will provide a more comprehensive of the
Regge-Teitelboim model and its properties. This part of the thesis is based on the paper
Ostrogradsky-Hamilton approach to Geodetic Brane Gravity.

6.1 Ostrogradsky-Hamilton approach to Geodetic

Brane Gravity

In this section, we will revisit the canonical formalism of the RT model, focusing solely on
the geometric aspect of the action. We will do this by utilizing the Ostrogradsky-Hamilton
[83] framework, which is specifically designed for analyzing singular systems, as dis-
cussed in the Appendix E. This approach offers several advantages, including the ability
to fully capture the geometric essence of the RT model in any codimension and to account
for the effects of all geometric terms. To achieve this, we will employ the Hamiltonian
formulation for relativistic extended objects, which was previously developed in [18, 19]
and inspired by the Arnowitt-Deser-Misner (ADM) Hamiltonian formulation of General

Relativity.
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The canonical analysis of the RT model does not involve the reduction by eliminat-
ing a total divergence. The resulting Lagrangian remains linear in the accelerations of
the extended object, allowing it to be a second-order derivative theory. However, according
to the Ostrogradsky approach, the canonical approach requires doubling the number of
phase space variables. Despite this, the advantage of this treatment is that it preserves
the original geometric nature of the model. Moreover, it highlights the important role
played by both the momenta and the Hamiltonian constraints within the canonical

structure.

6.1.1 Geodetic brane gravity without matter term

Geodetic brane gravity, when L., =0, is described by RT model defined by

(6.1) SrrlXH] = % f dP x5 R.

It should be noted that setting L, = 0 does not impact the geometric aspects discussed
in this section, which specifically pertain to the curvature contribution. Since we are not
considering any coupling to brane matter fields, we can set @ = 1. By performing the first
variation of the action, we can derive the equations of motion. The classical trajectories

of the brane are determined by the N — p compact relations
(6.2) G™K!, =0.

These equations of motion are of second order in derivatives of the field variables X*
because of the presence of the extrinsic curvature. Additionally, there are p + 1 tangential
vanishing expressions related to the equations of motion, reflecting the reparametrization
invariance of the action (6.1). Indeed, these are given by the divergence-free condition
VoG = 0. Another way of expressing the eom is by using the definition of the extrinsic
curvature. In addition, the eom (6.2) can also be written as a set of projected conservation

laws

(6.3) ~ (V@) -n' =0,

where in this case that L, =0, the conserved stress tensor 22,, is given by
(6.4) P, = —/—g G X s,

The stress tensor given by (6.4) is part of a class of conserved stress tensors that arise

in second-order derivative geometric models, known as Lovelock branes [30]. With an
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eye towards the Hamiltonian framework, when X is viewed as a spacelike manifold
immersed into m (see D), the associated timelike unit normal, ¢, helps to construct the

linear momentum density on X with
(6.5) m,:=N"1,2,°,

In this context, N denotes the lapse function, which appears in the ADM decomposition

for geometric models of extended objects that depend on the extrinsic curvature.

6.2 The ADM Lagrangian for geodetic brane gravity

A modified version of the ADM framework for General Relativity, adapted for branes, is
presented in detail in [18, 19]. When assuming that m is globally hyperbolic, it becomes
possible to foliate it into a collection of spacelike hypersurfaces X;. This motivates the
decomposition of relevant geometric quantities on the worldvolume into spatial and

temporal derivatives, similar to the ADM formulation of General Relativity.

We describe Z; using an embedding formulation. First, using the embedding y* = X*(t =
const,u?), we split the p + 1 worldvolume coordinates x® into an arbitrary time param-
eter t and p coordinates u? with (A,B = 1,2...,p)., for Z;. In this sense, X; is viewed
as the spacelike extended object X at fixed ¢. Secondly, it can be described also by its
embedding in m itself, x* = X%(u4). Both descriptions are related by composition. In-
deed, in one picture, the tangent vectors to Z; are e#4 = X#4 =0X #/ou?, and then the
induced metric on X; is Aap = X4 - XB. On the other hand, the tangent vectors to X;
are €%4 = X%4 = 0X%0u? and the induced metric is Aap = gabX“AXbB. Notice that
hag=Xa -XB=Xq Xp)X%4X%g, and we see that €4 = X*,e%4, from composition.
Accordingly, the choice of the hypersurface vector basis depends on the particular descrip-
tion we are interested in. For the first description we have {e" 4,n";,{*}, whereas for the
second one we have {€% 4,¢%}, where the appearance of the unit timelike vector accounts
for the causal structure on X;. Note that ¢ is defined implicitly by €4 - =0, n;-{=0
and ¢-¢ = -1, and in the second description we have a single unit timelike normal vector,
&, defined implicitly by gq5€%4E2 =0 and g4, ¢%¢% = —1, up to a sign. Furthermore, note
that g,5€%4¢% = (X, - Xp)e®ab =€4 - (£Pep) = 0 so that & = &2 XH,. In both descriptions,
h4B and h denotes the inverse metric and the determinant of 4 45, respectively. We also

define 24 as the torsion-less covariant derivative compatible with A 4p, see Appendix D.
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It is advantageous to define the following projections of the extrinsic curvature of m:,

(6.6) LfAB = eaAe‘bBK(ilb = —ni '@AGB,

(6.7) Lo =€ an’K!, = —n'- P4,
in addition to
(6.8) kap=—8apl*Dac’p = kpa,

that is the Z; extrinsic curvature associated with the embedding of X; in m given by
x% = )(a(uA). In a similar manner, in this geometrical framework the velocity vector,
X®=9,XH*, is tangent to the world volume m. In terms of the basis {€%4,¢?} the velocity

can be written as
(6.9) X*=N&+ N4y,

where, using familiar ADM terminology, N and N4 are the lapse and the shift vector,
respectively. Since the lapse and the shift vector are expressed in terms of the derivatives
of X* j.e. N = —g,, X% and N2 = g, h4BX%Pp, neither N nor N4 is a canonical
field variable. Indeed, contrary to what happens in the ADM treatment for the general
relativity, in the treatment adopted for extended objects both the lapse function and the

shift vector are functions of the phase space, and not Lagrange multipliers.

When examining the progression of X;, it is advantageous to initially select the co-
ordinate basis {¢%4,X*}. Consequently, the projections of the worldvolume metric g,

onto this basis promptly yield its ADM form. Therefore, we obtain
800 =8 XX = -N?+ NANBhyp,
(6.10) 804 =8apX "€’ s = NPhyp,
8AB = 8ap€”a€’p = hap.

In matrix form, the induced metric and its inverse are given by

~N2+NANBp NAh
(6.11) (8ap) = . AP 4B
N®hap hap
and
1 (-1 NA
(6.12) g == ,
g N2 (NA N2hAB _NANB)
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respectively. The metric determinant is given by g = —N?A. Applying a similar approach,
we can decompose the extrinsic curvature as follows
Ki =K., X°X°=-n"X,
(6.13) Kl =K. X%y =-n"-9,X,
Kip=Kl e®ac’p=-n"-2,PpX =L ;.
In matrix form we have
nt-X nt-guX

(6.14) K =—| .
ab (n’-.@AX

_Ti
LAB

The mean extrinsic curvature, K = g?°K 2 p> using (6.12) and (6.14), is given by
(6.15) K'= 5 |- X)- 2NA(n'- 24 X)+(N?hAB - NANB)L! .| .

The first term in the expression shows the linear dependence between K’ and the
accelerations of the extended object. It is worth mentioning that when considering pure

normal evolution with N4 = 0, the previous expression simplifies to
(6.16) N?K'=n'-X + N°L',

where Lt := hABquB = -n'-249,X, that emphasizes the linear dependance on the

acceleration.

By taking into account the contracted integrability conditions related to the Gauss-
Weingarten equations (D.1), we can represent the worldvolume Ricci scalar as the

combination of a first-order function and a divergence term.
(6.17) R =R +kapkE — k% + 2V, (RE" - E°V,EY),

In the expression above, & = hABE op and R represents the Ricci scalar defined on Z. The
inclusion of the final term, which is a total divergence, should not come as a surprise.
In General Relativity, this term is commonly known as the Gibbons-Hawking-York
boundary term [51, 113, 114]. It can either be subtracted from the outset, or kept as in
the proof of the positivity of energy theorems by Schoen and Yau [98, 99]. Alternatively, by
employing the integrability conditions associated with the Gauss-Weingarten equations
(2.11a,2.11b), the induced scalar curvature can be expressed as a single second-order

function when the boundary term is kept.
(6.18) R =2L;K' —GABP 11, Dp D X" DcDp X" — 20285, an’ - Dpn’.
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The first term in equation (6.15) conceals the linear dependence on the acceleration
through K. In this context, P 4 represents the covariant derivative associated with the
connection 04/ := €%y w?/, which accounts for the rotational freedom of the normal vector

fields (refer to Appendix D). The geometric object involved is
(6.19) GABCD ._ 5 AB,CD _ %(hAChBD 4+ RADRBC)

is a Wheeler-DeWitt like metric associated to Aap. It is important to note that the
normals, n*' = n*(X%, X%), depend on the functions X¢ and their derivatives. This
function dependence should be taken into account. It is evident that the canonical for-
mulation, which is based on the expression (6.17) and typically neglects the divergence
term, assumes a boundary-free brane, resulting in a different starting point compared to

the expression (6.18) that includes the divergence term.

Given our focus on providing an original portrayal of the RT model while honoring
its second-order nature, we proceed with the ADM decomposition of each term in the

action (6.1) in the following manner
(6.20) StalX"1= [ deLun(X¥a, X" X0 2, X,
R

where we recall that X* belongs to the configuration space from the Ostrogradsky-

Hamilton viewpoint, and

(621) LRT:fdpugRT:ngT-
z z

For ease of notation, moving forward, the differential d”u will be incorporated whenever
an integration over X is carried out. Thus, the Lagrangian density can be expressed as

follows
1 : T
(6.22) Lgr= §z\/\/}? [2L,~K‘ ~GABP 11, 24 DX " DcDp XY —2h*B5;iDan' - Dpn’|.

A few remarks are worth noting regarding the structure of this Lagrangian density. In
the first term, the linear acceleration dependence is concealed by the mean extrinsic
curvature, as evident in the first term of (6.15). The second term incorporates both
the superspace metric resembling Wheeler-De Witt and the previously defined normal
projector IT* = n“inly. Lastly, the last term precisely represents a nonlinear sigma model
constructed from n*?, exhibiting an O(N — p) symmetry that reflects the rotational in-

variance of the normal vectors n; = n#;(X%,X%), subject to the constraint n’-n/ = §.
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The Lagrangian density (6.22) serves as our initial reference point for obtaining the

Hamiltonian formulation of GBG.

Regarding the ADM decomposition of the linear momentum density (6.5), using the tan-
—ab
gential projector from m onto the hypersurface Z defined as 1" = hABea A€lp = gy Eagd,

we have
623) 7= VR Gapg" Xpe = VR |Gty — " Gape* e

where we have taken into account the relationship /=g = NV . Additionally, consider-
ing the integrability conditions associated with (2.19), we can express the projections of

the worldvolume Einstein tensor as follows.

1 /—

(6.24) E1G €0 = 5 (R Ay k2) ,

(6.25) E9Gape®® = Dp(RAB —nABR) = —(L4B - RABL))L ',
. . . 1

(6.26) EaAGabebB :KiLALAB_L;\CLCBi"'LALALBi_éﬁhAB,

where we recall that R denotes the Ricci scalar of the hypersurface ;.

6.3 Ostrogradsky-Hamilton approach

In accordance with the Ostrogradsky-Hamilton formulation, which was discussed in the
initial section of this chapter, we have a phase space of dimension 4N that is spanned
by two pairs of conjugate variables. {X*,p N;X #,P,} where the momenta p, and P,

conjugate to X* and X* respectively, are defined in terms of the X basis as

p _OLwr _ \/FLi

(6.27) s i W Ny,
5L .
(6.28) pu= 5;: 0Py =, +04 (N*P,+ VAR ELg n ),

Here, we consider 7, as defined in (6.5). It is important to note that the momenta P,
and p, have a spatial weight of one due to the presence of the factor Vi Additionally,
when integrating over a closed spatial geometry, the difference between the momenta p,
and 7, arises from a boundary term. In this regard, while the momenta P, are explicitly
normal to the worldvolume, the momenta p, are tangential to the worldvolume, with the
exception of a spatial divergence. To maintain a broad scope in our analysis, we will not

impose restrictions on closed geometry and will allow for arbitrary boundary conditions.
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In this extended phase space, the appropriate Legendre transformation is given by

A, :=p-X +P-X — %gr, and it provides the canonical Hamiltonian density of weight one
Hpy=p-X +2NAP -2, X) + (N?hAB - NANBYP -2, DpX) + NVRhABS,;Dan' - Dgn’
1
+§N\/F GABCP 11, 222X DcDp X",
(6.29)

so that the canonical Hamiltonian reads
(6.30) HC[X”,pN;X“,PH]:fifc(X”,pu,X“,Pu).
b

It is important to note that the canonical Hamiltonian exhibits a linear dependence
on the momenta p, and P,. In classical dynamics, the physical momenta p, can take
both positive and negative values in phase space, resulting in an unbounded canonical
Hamiltonian from below. This implies that the well-known Ostrogradsky instabilities

may be present in the dynamics of the theory, as discussed in previous works (e.g., [112]).

Furthermore, it is worth mentioning the absence of a quadratic term P2, which would
indicate a genuine second-order derivative brane model [1, 19, 80]. Additionally, the
canonical Hamiltonian ./, exhibits a highly nonlinear dependence on the configuration
variables X* and X*, including the lapse and shift functions as well as the last two
terms in (6.29).

The presence of local symmetries is reflected in the existence of constraints on the
phase space variables. In principle, we can determine these constraints by computing
the null eigenvectors of the Hessian matrix. However, in this case, the Hessian matrix

vanishes identically, indicating the presence of additional constraints.

6%Lgr
(6.31) Huy = BB =0
This characteristic is a distinguishing feature of theories that are affine in acceleration
[1, 29]. The fact that the rank of the Hessian matrix is zero indicates that the phase
space is fully constrained, meaning that we have N primary constraints. It is evident
that we cannot express any of the accelerations X* in terms of the phase space variables.
Thus, the definition of the momenta P, (6.27) itself gives rise to a set of N primary

constraint densities.

h .
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A more manageable approach to the computations with these constraints, without
affecting their content, is to exploit the intrinsic geometric nature of the system. Indeed,
using the tangential projector from .# onto the hypersurface X, " = pABer A€'B =
nHtY + EHEY - n*'nY;, written in terms of the hypersurface X basis {X*,e"4,n*;} we can
rewrite them as 6, = {,,€" = ‘€1Xu + %6 ENA +6; nui =0, where we have ¢4 = XH &% =
(X* — N4¢et 4 )/N. This linear combination helps to identify a set of equivalent primary

constraints densities

(6.33) €, :=P-X=0,
(6.34) €p:=P-04X =0,
h
(635) cgl. ::P-ni—§Li =0.

We will see below that these constraints do generate the expected local gauge transfor-

mations.

It is convenient to turn these constraints densities into functions in the phase space I'.
To do this, we smear out the constraints (6.33), (6.34) and (6.35) by test fields A, A4 and

¢' defined on X;, and then we integrate them over the entire spatial hypersurface X with

(6.36) Fy = f AP-X,
z
(6.37) V5= f MP-0sX,
z
: Vi
(638) %::L¢l P'ni+TLi .

Following the Dirac-Bergmann procedure for constrained systems, the dynamics in the

phase space I' is governed by the total Hamiltonian, which can be expressed as
(6.39) HIX!,py; X, P l=Ho+ S +7;+ W

The time evolution of any phase space function F' is given by

(6.40) 0;F =F = {F,H},

where we have used the Ostrogradsky-Poisson bracket [PB] appropriate for second-order

derivative theories

OF 56 _OF 56 g

6.41 F.G=| |—- _.
(64D {’}fz6X6p+6X6P
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with F,G € I'. By utilizing (6.40), we can effectively calculate the time evolution of
any constraint function. However, it is important to note that the primary constraint
functions (6.36-6.38), under the Poisson bracket (PB) structure, exhibit involution with

each other. Thus, we have

{y/lyy/'l’}:(L {7/177/1/}:07
(6.42) (A5 =74,  AA =24, U433 =0,
SHG =Wy,  $P=A¢, W5, W51 =0,

here, we have employed the variational derivative of the primary constraints as given in
F. To ensure consistency of the primary constraints according to the Dirac-Bergmann
procedure, we demand that their time evolution becomes zero. Following this process, we

obtain the densities of the secondary constraints as

(6.43) Cy:= 7 =0,
(6.44) Car:=p-04X+P-04X=0,
(6.45) Cii=p-n;—n;-oa (NAP+\/FhABLBJ'nJ~):o.

It is worth mentioning that these constraints can also be obtained by projecting the

momenta p, given by (6.28), along the Z; basis {(XH et g, nt).

As above, we turn the local secondary constraints into secondary constraint functions in
the phase space I' by smearing them by the test fields A, A4 and @, defined on X;, and

integrating over X,

(6.46) Sui= [ Ao,
>

(6.47) VA::fAA (p-0aX +P-04X),
b

(6.48)

&

::fzq)i [p-ni—ni-aA (NAP+\/EhABLBjnJ-)].

We would like to make the following observations. The constraints (6.33) and (6.34) are
characteristic of second-order derivative brane models and solely involve the momenta
P,. From a geometric perspective, these constraints can be interpreted as a consequence

of the orthonormality of the worldvolume basis.

In contrast, the constraints (6.43) and (6.44) involve all the phase space variables. The
constraint (6.43) indicates the vanishing of the canonical Hamiltonian, which is expected

due to the invariance under worldvolume reparametrization in the theory. It generates
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diffeomorphisms from X onto the worldvolume. On the other hand, the constraint (6.44)
generates diffeomorphisms tangential to Z. This can be verified by examining the PB
with the phase space variables, as we will see shortly. These two constraints should be

familiar to readers acquainted with the ADM formulation of General Relativity [110].

Regarding the remaining constraints (6.35) and (6.45), the first constraint represents a
way to express the trace of the spatial-spatial projection of the extrinsic curvature, L?,
in terms of the phase space variables. The second constraint reflects the orthogonality
between the physical momenta 7, and the normal vectors to the worldvolume. In other
words, the constraints (6.35) and (6.45) are characteristic of brane models that are linear

in accelerations.

6.3.1 Hamilton’s equations

Here we obtain the field equations in the Hamiltonian formulation. This computation is
helpful in order to fix some Lagrange multipliers that appear as test functions in the
definition of the constraints as functions in phase space in terms of the phase space
variables. In addition it provides a check, as it reproduces the form of the momenta

P, py given by (6.27) and (6.28), respectively.

By considering the functional derivatives in appendix F as well as the Hamiltonian

(6.39) we have first that
0Hy

(6.49) 0, XH={X+} H}=— =X*".
Opu

This result is obvious since the only dependence on p, is through the term p -X appearing

in H.. Secondly, we compute

5H, 51; oW
0+55”A+ i <l>’
5P, 6P, 6P, &P,
INAD Y XHF +(N2RAB - NANBYD A D XH + AXHF + A4t 4 + pint;.

0, X" = (XM,H}=

(6.50)

Upon contracting (6.50) with the momenta P, and taking into account the identity (6.15),
as well as the primary constraint densities (6.33), (6.34), and (6.35), we can establish the

following identification
(6.51) ¢' = N2K".
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To determine the remaining Lagrange multipliers, it is helpful to recall a significant

identity that relates the acceleration in terms of the Z; basis [19],

652 Xt =(NA+NDsN -~ NBDsNp)e"L + (N + NADAN + NANBE 45)E*
. + (ni X)n”l

As before, by considering (6.52) and the primary constraints, when contracting (6.50)

with ¢ and €4 yields

N2 vVEY 1.
6.53 A=PuNA-—¢y, | — | = = (N -N29,N - N2k
( ) A \/F(f a( N) N( A ),
N2 VA NA
6.54 A =NPAN - NA9gNB + ¢y, | ———

where we have used the time derivative of the spatial metric, hap = 2Nkap + 29aNp)
and its determinant, ;,(vVA) = VA (NK + 24 N4). It is worthwhile to mention that the
Lagrange multipliers (6.53) and (6.54) are inherent to second-order derivative brane
models [19, 76].

We turn now to compute the time evolution of the momenta P,. We obtain the lengthy

expression

§Hy 65 O

SXH  SXH  SXH

=—pu—2P-Da X)W Be g+ DA2NA P,) + 2NhAB(P -9, 25X)¢,

0P, ={P,,H} = -

1
+2NB(P - 2,25 X0 Ce i + 5\/;7 GABCPT, 522 D8 X " DcDpXPE,
—\/EGABCDLZBkCD ny;+ \/EhAB5ij (@Ani . @an) SIJ

_ N VA v
(6.55) +|2a (2NVERARS D0t ) ¢ I %Lifu +(p’]\<r—:knm.

By inserting (6.51) and (6.53) into the previous expression we get
pﬂ:{a¢ﬁ

+ hAB5iJ' (@Ani -@an)] fy

: 1
L;K'-2L;L' + EGABCDHaﬁ@A@BX“@C@DXﬁ

.~ ~ . 1 .
+ \/F[kKL+@A (2NhAB5ij@BnJ)-(NT])—GABCDLiquCD Ny

. 1 .
+2VRRABL, Lot e,p - & ~NA9AN - N2k)P, + @A(zNAPu)}
(6.56) ~0,P,,.
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This expression coincides with the definition of p, (6.28) in a higher derivative theory,
when we identify the term within the curly brackets on the right-hand side as 6 Lgr/6 X*.
Additionally, this expression demonstrates the linear relationship between the momenta
py and the accelerations of the extended object [76]. Thus far, the Hamilton’s equations
successfully reproduce the expressions for the momenta, as well as the expressions for
the velocity and accelerations of the extended object. Finally, the time evolution of the

momenta p, is given by

SHy 85 &V; W5
SXH S6XH SXH SXW

(6.57) 0tpy=1{pu,Hl =~

the expressions provided above correspond to the field equations of the model (6.2) in
its canonical form. This can be demonstrated through a lengthy yet straightforward
calculation, involving the explicit introduction of the Lagrange multipliers (6.51), (6.53),
and (6.54).

6.4 First- and second-class constraints

To classify the constraint surface, it is necessary to distinguish between the primary
and secondary constraints, categorizing them as either first or second class constraints.
To initiate this process, we reassign labels to the constraint functions in the following

manner.
(6.58) Q1= {W(};,yA,VX,SA,V]\,W&)}, I= 1,2,...,6.,

where we have chosen a convenient order for them. Then, we turn to construct the
antisymmetric matrix composed of the PB of all the constraint functions, WI’ g ={oneJ}.

Explicitly, the matrix W} ; reads, weakly on the constraint surface,

(6.59) (WI,J) =~

S O O O O
o O O O O
S O O O O
oS O O O O
oS O O O O
Y PR EK

-€ - -B -9 -&

where the nonvanishing entries «/,%8,6¢,%2,6 and & are defined in appendix G. The

rank of this matrix is 2, thus pointing out the existence of two second-class constraint
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functions. To select these it is necessary to determine first the 4 zero modes w(Iu) with
z=1,2,3,4, so that WI,J“’ZL) = 0. These can be taken as follows

~ A€ ~BI€ ~D/€ ~&/€
1 0 0 0
0 1 0 0
(6.60) wly, = . ol = . ol = Y
1 0 (2) 0 3) 1 4) 0
0 0 0 1
0 0 0 0

With these the functions vy, := w(Iu)(p 1 are first-class constraints,

6.61) Y1=S— LWy, Yo =V —2W,,
¥s=Sn—&W,, Ya=Vi-&¥s.

To identify the second-class constraints formally, we can follow these steps. By selecting a
set of linearly independent vectors, denoted as w(lu,) with ' = 5,6, which are independent
of the vectors w(lu), and satisfying the condition det(w(II,)) #0 with I' = (u,u’), we can
define the functions y, := w(Iu,)(pI as second-class constraints [52]. This can be achieved

by choosing

I _ I _
(6.62) W5 = , and W) =

= o O O O O

S O O O O =

we observe that the previously mentioned conditions are satisfied. Then,

(6.63) o=

(6.64) X6 — W&)

are second-class constraints.

The constraints y, and y, establish an equivalent representation of the constrained
phase space. Within this new framework, we can introduce the matrix elements C,/, :=
Xu'> Xo' With u/,v" = 5,6, and its inverse matrix components (C _1)”'”', which are deter-
mined by

3 0 € —lu’v/_]‘ F €
(665) (Cu'v’) = (_Cg <g_) ’ and ((C ) ) = @ ((g 0 ),
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respectively. In accordance with the theory of constrained systems, the matrix (C~1)*""’

provides a means to introduce the Dirac bracket using the standard approach.

(6.66) {(F,Gip = {F,G} — {F, xu }C ™" {,, Gl

After formally identifying the second-class constraints, we can impose them strongly to
zero, thereby reducing them to identities that express certain phase space variables in

terms of others. Consequently, the first-class constraints (6.61) are simplified to

Y1=%, Y3 =8,

(6.67)
Y2 =7%; yYa=V53

As anticipated, the first-class constraint functions y2 and y4 each consist of p primary
constraints and p secondary constraints, respectively. Likewise, the second-class con-
straint functions y5 and yg incorporate (/N — p) primary constraints and (N — p) secondary
constraints, respectively. This implies that the count of physical degrees of freedom (dof)
is as follows: 2 dof = (total number of canonical variables) - 2 (number of first-class con-
straints) - (number of second-class constraints). Hence, dof = N — p = i. Therefore, there
exist i degrees of freedom, with one corresponding to each normal vector of the worldvol-
ume. This count aligns with the number of physical transverse motions ¢’ := n’-8X that

characterize first-order derivative brane models, as expected.

With support with the gauge transformations that generate the first-class constraints, it
is convenient to name #) the shift constraint while 75 will be referred to as the primary
vector constraint. In the same spirit, Sy and V3 may be thought of as being the scalar
and secondary vector constraint, respectively, in comparison to the ones appearing in a

canonical analysis of the Dirac-Nambu-Goto model.
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6.4.1 Algebra of constraints

Under the Dirac bracket, the algebra spanned by the first-class constraints is

(6.68a) A, Snip =0,

(6.68b) (.74 =74,

(6.68c) {F2,SAlp = =2, —Shy,
(6.68d) A, Vilp ==F»1,

(6.68¢) 5,%1p =0,

(6.68f) V3,Sap = S0 =75, = Vi,
(6.68g) 3, Vilp =i &y

(6.68h) {SA,SatD = Hys

(6.68i) Sa,Vilp =-Szn+73,,
(6.68j) Vi, Vilo =Viz iy

where we have introduced

A =4, A8 = 2ANBEAA,

6.69) 17 AZLRA Ag = (N2hAB — NANBYADA DN — N DDA,
A7 = AL%, A4 = AN?RAE - NANBY 2,25 AC + RappCAP),
A1=2A.

This algebra is equivalent to the algebra under under the PB, once we apply the property
{F,yu} ={F,y4}p, for any phase space function F'.

The geometric interpretation of this algebra can be illustrated as follows. Starting with
(6.68h), we observe that different orderings of the scalar constraints only differ by
a shift transformation, indicating that the time evolution with the scalar constraint
is unique up to a rescaling. From (6.68i), we note that the Poisson bracket (PB) of a
vector with a scalar constraint yields a scalar constraint with a test field given by the
Lie derivative of the parameter A along the vector field 1, accompanied by tangential
deformations provided by the primary vector constraint. Relation (6.68j) demonstrates
that the secondary vector constraints form their own proper subalgebra, exhibiting
invariance under reparametrizations of the theory. As for (6.68a) and (6.68e), they show
that shift and primary vector transformations each form their own sub-algebra, with both
sub-algebras being Abelian. Expression (6.68b) depicts how the primary vector constraint

changes under the shift transformation, revealing that although the vector constraint
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is preserved, the test field is modified. Relationships (6.68c) and (6.68d) demonstrate
how the shift transformations change under the scalar and vector constraints. At this
point, it becomes evident that the scalar and vector constraints serve as generators of
diffeomorphisms, both tangential and orthogonal, to Z;. Similarly, (6.68f) and (6.68g)
determine how the primary vector constraint changes under the scalar and vector
constraints. It is important to note that despite the constraint algebra being closed under
the Dirac bracket, it is an open algebra since several of the test fields (6.69) depend on
some of the phase space variables. Furthermore, this constraint algebra differs from
those encountered in usual gauge theories. This fact poses a challenge for the standard

canonical quantization of GBG within the framework considered.

6.4.2 Infinitesimal canonical transformations

In order to further illustrate the role of the constraints in the theory, in this subsection
we consider infinitesimal canonical transformations.

It is worth remembering that, for any classical observable F' € I', the Hamiltonian vector
field

OF & 6F.6 6F.6 6F.6

= = =t= = —-—,
F fz((Sp 5X 6P 6X 0X 0p o6X oP
generates a one-parameter family of canonical transformations G — G + G, where

(6.70)

O0rG :=€{G,F}, with € being an infinitesimal dimensionless quantity. The Hamiltonian
vector fields associated with the first-class constraints (6.67) induce the infinitesimal

canonical transformations

5yAX”:0, 5SAX”=€3AX”,
8.5, XH =1 AXF, S5, XM =es 32,
Xy, —3{ 7 1 Xy, —1{ &;g
6:5”,1p/.t:07 6S/\p/~1:_€3ﬁ,
—_ = —e, 954
(6,71) 6Y/1P/~t = 61/1Pu, 6SAPﬂ = —€3 XL’
57/71X“ = 0, 5V7\X” :€4$T\X”,
Xm .y 57/71X/”l = €2$1X“, Xm .y 5V7\X” =€4$7\X”,
6y;pu=€223P,, Ovipu=€1L5Py,
57/71Py =0, 6V7\Pp = €4$]\Pu7

where €, with u =1,...,4, denotes arbitrary gauge parameters corresponding to each of

the first-class constraints y,, respectively. For instance,

XH XH e AXH, and P, — P, —€1AP,,
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are the gauge transformations induced by the gauge function A. From (6.71) we infer
that the constraint V; generates diffeomorphisms tangential to X;, while Sp is the
generator of diffeomorphisms out of Z; onto the worldvolume m. On the other hand, %}
is the generator of a momentum reflection in the sub-sector of I' given by {X #;P,} that
is, the sector associated to the second-order derivative dependence; from another view
point, this constraint generates shift transformations only in the velocity sector of the
phase space. Finally, the constraint 75 only acts on the sub-sector {X*p u} by generating
displacements in the orthogonal complement of this sub-sector, that is, in the sub-sector
{XH; P}
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CHAPTER

DISCUSSION AND CONCLUSIONS

n the first part of this work, our main objective was to develop covariant variational
tools that are valuable for studying the dynamics of extended objects, with a focus
on obtaining covariant equations from a variational principle. For this purpose, we
introduced different covariant variations, each with its own advantages and disadvan-

tages depending on the specific physical system under consideration.

If we approach a physical system from the perspective of an ambient spacetime, the
covariant variation discussed in Section 3.2 is suitable. It allows us to derive covariant
equations that are invariant under the background symmetries. Moreover, the calcula-
tion of the first, second, and third variations of the action is relatively straightforward.
It is important to note that dealing with a curved ambient spacetime does not pose a

significant challenge within this approach.

However, the resulting equations obtained using this covariant variation contain non-
dynamic parts. To eliminate these non-dynamic components, it is necessary to project
the equations along the normal fields. In contrast, the covariant variation presented in
Section 3.1 provides equations that are covariant under full dynamical reparametriza-
tions of the extended object’s world volume. However, calculating subsequent variations
of the action using this approach can be significantly more complex and time-consuming,

particularly when considering a curved background spacetime.
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In addition to the above variations, we introduced a simultaneous covariant action
for extended objects. This action, yields both the equations of motion and the Jacobi
equations. The simultaneous action offers a convenient alternative approach for stability
studies, providing a direct path to the second variation of the geometric model. Further-
more, the simultaneous action can be extended to incorporate additional brane-living
fields or "pressure terms" that may arise in fundamental branes. Although these addi-
tions may affect the simplicity and elegance of the covariant simultaneous principle, they

prove beneficial in applications where external forces play a significant role.

In the second part of this thesis, our focus was specifically on the Regge-Teitelboim
geometric model, utilizing the variational tools discussed earlier. Through these tools,
we derived dynamic equations as well as Jacobi equations, with the latter serving as a
crucial tool for studying the stability of specific solutions to the equations of motion. As
expected, these equations are explicitly covariant under rotations of the normal fields.
Within this geometric framework, conserved geometric structures play a fundamental
role in expressing the Jacobi equations in the form of wave-like equations, allowing for
the extraction of geometric "mass" terms.

Having established the general form of the Jacobi equations, we directed our attention to
a specific solution of the equations of motion, namely a four-dimensional Schwarzschild
geometry embedded in a six-dimensional Minkowski spacetime. By exploiting the sym-
metries of this solution, we derived a set of equations that determine the quasi-normal
modes of the system. Our findings indicate the presence of instability for this configu-
ration in the absence of matter. While an analytical study of the Jacobi equations for
this case provides valuable insights, it is not conclusive. However, numerical analysis

supports the existence of unstable small deformations.

Furthermore, the results presented suggest the potential extension of these findings to
the entire class of Lovelock branes, representing the next step in understanding this
type of geometric model for branes. It is important to note that a crucial assumption,
both in physical and geometric terms, is the embedding of the world volume in a flat
background spacetime. Generalizing this framework to arbitrary background spacetimes
poses challenges, but for maximally symmetric ambient spacetimes such as de Sitter or

anti-de Sitter backgrounds, it appears to be achievable.

Additionally, we have conducted a comprehensive Ostrogradsky-Hamilton canonical
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analysis of this model, wherein a crucial aspect of our investigation involves construct-
ing an ADM Lagrangian density for the model that is linear in the acceleration of the
embedding functions. Typically, this term is disregarded as a boundary contribution.
However, by retaining it, we treat the RT model as a higher derivative theory, despite
its second-order equations of motion. Following the Ostrogradsky-Hamilton canonical
formulation, we introduce an extended phase space with positions and velocities as
configuration canonical variables, along with their corresponding conjugate momenta.
We have derived the canonical Hamiltonian density for the model, which includes terms
linear in the conjugate momenta. This indicates the well-known Ostrogradsky insta-
bility in higher derivative theories, where the Hamiltonian is unbounded from below.
Nonetheless, we remain hopeful that a suitable canonical transformation can be found
to address this issue and obtain a Hamiltonian that is bounded from below. Paul [89] has
suggested a potential strategy, involving the resolution of second-class constraints, but it
seems to be a non-trivial task in the present scenario. Another alternative is to employ
a path integral quantization program tailored to second-order singular systems, which
incorporate second-class constraints in the theory [101]. However, further investigation
is required in this regard. Consistent with the theory’s reparametrization invariance
symmetry, the Hamiltonian is a linear combination of constraints. We have identified the
complete set of constraints and categorized them as first- and second-class constraints.
The presence of second-class constraints is the consequence of including a linear term in
the Lagrangian’s acceleration, but their form is quite manageable. Moreover, we explicitly
demonstrate how the constraints generate the expected gauge transformations, and we
have successfully determined the correct count of physical degrees of freedom. Addition-
ally, we have verified that Hamilton’s equations reproduce the Euler-Lagrange equations
of the theory. It should be noted that the codimension remains arbitrary based on the
expressions obtained for the Lagrangian, Hamiltonian, and constraint densities. Many
of the features observed in the RT model extend to the broader class of theories that are
linear affine in accelerations [29]. In principle, starting from our classical formulation, it
is possible to implement a formal canonical quantization program, which would fulfill
Regge and Teitelboim’s original motivation. Notably, in the context of quantum gravity, a
significant technical advantage lies in the existence of a fixed background, which aids in
formal quantization. The phase space variables would be promoted to operators within a
suitable Hilbert space. Consistent with a theory featuring second-class constraints, the
Dirac brackets would be replaced by commutators for these operators. However, certain

challenges must be addressed, such as finding appropriate gauge fixing conditions to
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obtain a space of physical states and resolving the issue of obtaining a Hamiltonian
that is bounded from below, while avoiding the presence of ghosts and the violation of
unitarity. Ideally, deriving a Hamiltonian constraint quadratic in the momenta p, would
be desirable. Furthermore, another complication arises from the fact that the constraint
algebra obtained is not a genuine Lie algebra and deviates from the typical algebra
encountered in gauge theories. All of these considerations would also arise in a path
integral or BRST quantization of the model. Despite being aware of the forthcoming
difficulties, we believe that our Ostrogradsky-Hamilton treatment of geodetic brane

gravity serves as a reliable foundation for further investigation.

Several ongoing projects in which we are actively involved have emerged from this
thesis. One such project focuses on the extension of the simultaneous action to high
derivative systems. This extension is particularly valuable due to its elegant formulation
and ease of implementation, making it conducive to studying more intricate systems.
Within the context of the Regge-Teitelboim model, we are currently engaged in a project
aimed at deriving its Jacobi equations, which are geodesic deviation equations applicable
to arbitrary ambient spacetimes. This endeavor holds great potential in physical models
involving higher dimensions. Furthermore, we have been investigating the boundary
terms associated with the aforementioned model, as they play a crucial role in deter-
mining appropriate conditions. In general relativity, for instance, the inclusion of the
Gibbons-Hawking-York term is necessary when considering boundaries. However, in the
geodetic brane gravity framework, it is not guaranteed that the boundary term follows

the same structure, given the distinct nature of the degrees of freedom involved.

On a the other hand, using the Jacobi equation derived for the Regge-Teitelboim model,
we are interested in exploring the stability of other significant solutions, such as asymp-
totically de Sitter black holes and Kerr black holes. Our objective is to compile a catalog
of classically linearly stable and unstable solutions. Lastly, we are considering the quan-
tization of the deformation modes of the Schwarzschild black hole. Although we have
shown that these modes are characteristic of unstable deformations, it remains uncer-
tain whether we can surpass these instabilities at the quantum level, as is the case in

electromagnetism.
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APPENDIX

PROOF FOR THE CONSERVATION LAW (5.20).

The tensor G,/ is divergenceless. To prove this we define the tensorial matrices

(A.1) Gap™ = 2Ryp ™ — gupRY,
where
(A.2) R, :=K“K,;,” - K,“K,.”, and RY:=K'K/-K°“K,; .

The divergence of (A.1) is
VG, = 2VIRY, — gqp VIRY.

On the one hand, we have for the first term

ﬁaRabij — (ﬁaK(i)Kabj) + (ﬁaKab(i)Kj) _ (ﬁaKac(i)Kbcj) _Kac(i ﬁaKi)c

(A.3) = (VKD Kp” + (VKHK? - (VKK - KO VK]
— (ﬁbK(i)Kj) _Kac(i ﬁaKZJ)')C,

where we have used (2.19b) to obtain the second line. Now, for the second term
(A4) VpRY =2|(VoKDK? - K, VK] | .
The difference between twice (A.3) and (A.4) reads

(A.5) 2§aRabij _gabﬁalRij = ﬁaGabij =0.
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APPENDIX

EXPLICIT FORM OF TRANSFORMATION MATRIX M AND
EFFECTIVE POTENTIAL V.

The matrices appearing in (5.41) are

b b d d
(B.1)A:(a11 alz)’B:( 11 12),02(011 Clzst)’D:( 11 12).
a2 —ai1 big —-b11 ciz —c11— % dis —dig

Notice that A, B and D are traceless symmetric matrices while C is not. In fact, this is
responsible for not being able to decouple the system of equations (5.41). The explicit
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APPENDIX B. EXPLICIT FORM OF TRANSFORMATION MATRIX M AND
EFFECTIVE POTENTIAL V.

components of these matrices are
2R (r3 - R3)
a = 5
=03 (r3+r?R+rR2?+R3)

(r—R)r®*+r2R +rR2-R3\/r3R(r2+rR +R2?)

2= PRG3+r°R+rR2+RY) ’
y  _ 2R (-8 +r*R% +6r3R3 + 3r2R* + 2rR% + RY)
11 = 5
r4 (r3 +r2R +rR?2 +R3)2
big = 2r3\/r3R (r2+rR +R2)‘(r3+7‘2R+7‘RZ+R3)2 x

(-r?-3r®R - 6r"R? - 22rR® - 20r°R* - 16r*R® + 6r°R6 + 6r°R" + 5rR® + 3R?),
R(r—R)(r?+2rR +3R?
r5(r3+r2R +rR? +R3)

R%(9r° +27r®R +54r'R% + 42r°R® + 17r°R* - 21r*R® + 4rR® + 12R?),

-1
c11=Il(+1) ) — [27‘6 (r3+r2R +rR2+R3)3] X
(B.2)
1 r3R y
r2+rR+R2
(r®+2r°R +3r*R? + 16r°R® + 15r2R* + 14rR5 - 3R®)

-1
X

c12=10+1)[4r"R (3 +r?R+rR?+R?)]”

42 /R (r2 + 1R + R2) (3 + 1R + R + R?)’

R (3r' +12r'°R +30r°R% + 90r®R® + 182" R* + 296/°R°
+254r°R® +150r*R" - 5r3R® — 56r2R? - 56rR 1% - 36R ™),

6R*
=R
3R?(r® +r°R +rR? - R3)\/r3R (2 + rR + R?)
dig =

(r"-r*R3)(r3+r2R +rR%2 + R?)

On account of the definition

D'B d
(B.3) h::—( + ﬁ)
fe dr
where I denotes the 2 x 2 unit matrix, we find that the matrix M can be written as
1(h
(B.4) M =exp (——f—dr).

In the same way, the potential matrix V in terms of these matrices, becomes

dh 1
_lgdh +~h2+M ! DICM.

(B.5) =5 a1
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APPENDIX

MATHEMATICA CODE

(«We define the following geometric objectsx)
£:={t,r,0,¢} (scoordinates on worldvolumex);

1
g={{-vr1%,0,0,0},{o, e

,o,e},{o,e,r’,o},{e,o,e,r’ S'in[e]z}};winduced metrics)
Ig=Inverse[g] (+Inveverse of induced metric«);
4
rfal_,bl_,c_]:=rfal,bl ,c]=S'imp'l.'ify[(I/Z)aZ(Ig[al ,d]*(D[gd,b1],E[c]]+D[gld,c],E0b1]]-D[g[bl ,c]|,§|[d]]]))] («Crhistoffel Symbols«);

d=1

el=1

4
Riemann[al_,bl_,cl_,d1_]:=Riemann[al,bl,cl,d1]= )" [g[al,el] [D[I‘[el,dl ,b1],€[c1]]-D[r[el,cl,bl],E[d1]]

4
+ ) (rlel,cl, f1]xr[fl,d1,b1]-T[el,d1,f1] I'[fl,cl,bl])]]uRiemann Tensors«);
fi=1

K1={{0,0,0,0},{0,(D[a[r],r] b[r]-a[r]-D[b[r],r])/a[r],0,0},{0,0,-r b[r],0},{0,0,0,-r b[r]Sin[6]A2}} («Extrinsic Curvature 1 with low indices«);

K2={{-¥[r]172/(2 R a[r]),0,0,0},{0,2 a[r]RA2/(r 2(r-R)),0,0},{0,0,-a[r]RA2/r,0},{0,0,0,-a[F]RA2 Sin[6]A2/r}} («Extrinsic Curvature 2 with low indices«;

b(r] a'[r blr b[r] Csc[e]?
K1U={{0,0,0,0),{0,7[r]‘ (M-b'[rl],e,a},{e,a,- L ],e},{a,e,a,_u}} +Extrinsic Curvature 1 with up indicess);
a[r] r? r3
1 2 R? a[r] y[r]* R? a[r] R? a[r] Csc[e]? L . o
K2U={{-—,0 0,0},{0,—,0,0},{0,0,-—,0},{9,0,0,-—}}V«Extrmsm Curvature 2 with up indices«)}
2 R afr] y[r]? r? (r-R) rs rs

2 b[r] 5 (bIr] a'[r] -
kl=-———+y[r] {—_h'[r]] (*Mean Extrinsic 1 Curvaturex);
-

a[r]
1 2 R? a[r] (-r+Rer y[r]?)
k2 (*Mean Extrinsic 2 Curvaturex);
2 R afr] r? (r-r)

Kt={K1,K2} (xExtrinsic curvatures with low indicesx)}

KUt={K1U,K2U} (+Extrinsic curvatures with up indicess);

kt={k1,k2} (+Mean Extrinsic Curvaturess);

wt{{{0,0,0,0},{0, (RA2/rA2) (a[r]-D[b[r],r1-b[r]-D[a[r],r]),0,0}},{{0,- (RA2/r 2) (a[r]-D[b[r],r]-b[r]-D[a[r],r]),0,0},{0,0,0,0}}} («Gauge Field w,:);
$t={d1[t,r,0,0],2[t,r,0,4]} («Deformation fields:);

4 4
Glal_,bl_,i_,j_]:=6[al,bl,1,j1=kt[i]-KUtLj,al,bl]+kt[iT-KUtLi,al,b1]-| 3" 3" (KUtLi,bl,d1]-KUt[j,al,c1]-glcl,d1]+KUtL],bl,d1]-KUtLi,al,c1] gl[cl,dl]])]
cl=1d1=1

4 4
+Ig[[a1,b11|[[z Z(Kt[[i,cl,dl]] Kut|[j,c1,d1]|)]-kt|[1'1| kt|[j1|] (+Tensor G*,;+)3
cl=1d1=1

2 4 4 2
DD¢[Cl_,d1_,1_1==D[ D[¢tﬂ1'll,§lld1]ll—2(wtlﬁ,j,dln*¢t[jn)l,frICl]I]—Z(I‘[eLCl »d1]-D[ét[i],&0e1l]) + Z[T[EI,CI »d1] Z(wtlﬁ,j,eln ¢tll:i]])]l

erm1 e1m1 a1

jo1

2 2 2
- Z(mt[i,j,cl]*D[d:t[[j]],§|[d1]|])]+ZZ(wt|[1',j,c1]| wt[j,k,d1]x¢t[K]) («This term is the second covariant derivative of deformation fields, V,vpo'

j=1 j=lk=1

(3 e ko ko ko ko ko ko ok ko ko ko ko ko ok
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APPENDIX C. MATHEMATICA CODE

+The equations of motion are given by

4 4 2 4 4 2
Equation[il_]:= Z: z: Z:[G[al,bl,il,jl] [DD¢[a1,b1,j1]+ Z: Z: Z:Kt[jl,al,clﬂ Igcl,d1]-Kt[l1,d1,b1] ¢tn11n]] «Equation of Motion

al=lbl=1j1=1 cl=1d1=111=1

xit is convenient to have each one of the components of these differential equations separately =
al=Simplify [Expand[Coefficient[El,¢1[t,r,0,4]1]]1,r>R>0];
a2=Simplify [Expand[Coefficient[E1,¢1*%9]],r>R>0];
a3=Simplify [Expand[Coefficient[E1,61®%%% [t,r,0,6]]],r>R>0];
a4=Simplify [Expand[Coefficient[E1,41* %% [t,r,0,¢]
a5=Simplify [Expand[Coefficient[E1,$1*%%% [t,r,0,0] s

] ]
11,r>R>0]
11 ]
a6=Simplify [Expand[Coefficient[E1,¢1®%1® [t,r,0,0]1]],r>R>0];
1] ]
1] ]
]

H
Sr>R>0
a7=Simplify [Expand[Coefficient[E1,41%>% [t,r,0,6]]],r>R>0];
a8=Simplify [Expand[Coefficient[E1,41*% %Y [t,r,6,0]
29=Simplify [Expand [Coefficient[E1,41*%%? [t,r,0,4]]],r>R>0
B1=Simplify [Expand[Coefficient[El,$2[t,r,0,4]]],r>R>0];
B2=Simplify [Expand[Coefficient[E1,621%%% [t,r,0,6]]],r>R>0];
B3=Simplify [Expand[Coefficient[E1,62®% %% [t,r,0,6]]],r>R>0];
B4=Simplify [Expand[Coefficient[E1,42® 1% [t,r,0,6]]],r>R>0];
BS:Simplify[Expand[Coefficient[E1,¢2m‘L°ﬂ)[t,r,9,¢] ],r>R>0];
B6=Simplify [Expand[Coefficient[E1,62% 1% [t,r,0,6]]],r>R>0];
B7=Simplify [Expand[Coefficient[E1,$2*%>% [t,r,0,4]]],r>R>0];
B8=Simplify [Expand[Coefficient[E1,42®% %Y [t,r,0,6]]],r>R>0];
BB:Simplify[Expand[Coefficient[E1,¢2m‘%°ﬂ)[t,r,e,¢]]],r>R>0];
51=Simplify [Expand[Coefficient[E2,¢1[t,r,0,4]]1],r>R>0];
52=Simplify [Expand[Coefficient[E2,1M %% [t,r,0,6]]],r>R>0];
53=Simplify [Expand [Coefficient[E2,61%%% [t,r,0,6]]],r>R>0];
54=Simplify [Expand [Coefficient[E2,61(% % [t,r,0,6]]],r>R>0];
55=Simplify [Expand [Coefficient[E2,61(*>%? [t,r,0,4]]],r>R>0];
56=Simplify [Expand[Coefficient[E2,61(* % [t,r,0,6]]],r>R>0];
] 15
] 15
15

,r>R>01;

5

57=Simplify [Expand [Coefficient[E2,61(% %% [t,r,0,6]]],r>R>0
58=Simplify [Expand [Coefficient[E2,61(%%%Y [t,r,0,4]]],r>R>0
59=Simplify [Expand [Coefficient[E2,41(*%%? [t,r,0,4]]],r>R>0
e€1=Simplify [Expand[Coefficient[E2,¢42[t,r,0,4]]1]1,r>R>0];

€2=Simplify [Expand [Coefficient[E2,62%%% [t,r,0,4]]],r>R>0

13
e3=Simplify [Expand[Coefficient[E2,62%%% [t,r,0,6]]],r>R>0];
e4=$imp11fy[Expand[Coefficient[E2,¢2m‘L°m)[t,r,9,¢]]],r>R>0];
€5=Simplify [Expand [Coefficient[E2,62(%*% [t,r,0,6]]],r>R>0];
€6=Simplify [Expand [Coefficient[E2,62(% % [t,r,0,6]]],r>R>0];
e7=Simplify [Expand[Coefficient[E2,62(% %% [t,r,0,6]]],r>R>0];
e&:Simplify[Expand[Coefficient[E2,¢2m‘%°J)[t,r,e,¢]]],r>R>0];
€9=Simplify [Expand [Coefficient[E2,62(%%%? [t,r,0,6]]],r>R>0];

xwhere the explicit form of funcions a, b, y is «

a[r]=Sqrt[rA3/(rf3+rA2 R+r RA2+RA3)];
a'[r]=D[a[r],r];

a''[r]=D[a'[r],r];

b[r]=Sqrt[R(rA2+r R+RA2)/(rA3+rA2 R+r RA2+RA3)];
b'[r]=D[b[r],r];

b''[r]1=D[b'[r],r];

¥[rl=Sqrt[1-R/r];

¥'[r1=D[¥[r],r];

¥''[r1=D¥'[r],r];
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xUsing these coefficients one can construct the following matricessx
II:={{1,0},{0,1}};
Al:={{a5,B85},{B5,-a5}}//Simplify;
{04,B4}, {B4,-a4}}//Simplify;
Cl:={{al-2 a7,Bl-1 B7},{Bl-A B7,el+A a7}}//Simplify;
D1:={{a3,B3},{B3,-a3}}//Simplify;
C2:={{al-Q a7,Bl-1 BT},{Bl-A B7,-al+d a7}}//Simplify;
Z1={{0,0},{0,al+el}}//Simplify;
C11=C2+Z1//Simplify;
A=-Inverse[D1].A1//Simplify;
B:=-Inverse[D1].B1//Simplify;
:=-Inverse[D1].C2//Simplify;
Z=-Inverse[D1].Z1//Simplify;
A2:=A;
B2=((1/r)A+B);
C3=-(A/ (4 rr2))+(B/(2r))+F+Z;
(r-R)2 (r?s+r R+R2)]
D ]

fg:S'impl'ify[Sqrt[ r—R>0] H

3rR
H1=-Simplify[Expand[1/(2 fg) (B2/fg-D[fg,r]1II)],{r>R>0}];
h=B2/fg-D[fg,r]II//Simplify;
M={{Cos[h12[r]],Sin[h12[r]]1},{-Sin[h12[r]],Cos[h12[r]]1}};

xConsidering these matrices the potential matrix can be written as «
V=Simplify[(h.h)/4+fg D[h,r]/2-Inverse[M].C3.M,r>R>0];

+Here we calculate the limit of the matrix potential in the space boundaries )
Limit[(V/.h12[r]-d),r>»]

Limit[(V/.h12[r]>d),r>R]
It is convenient to make a change of variables from r to 1/z and from R to 1«

B4=fg(h-2 i w II+D[fg,r] II)//Simplify;
C4=C3-i w h//Simplify;
fgz=~fg/.{r-1/z,R>1};
B4z=B4/.{r-1/z,R->1};
C4z=Simplify[C4/.{r>1/z,R>1},0<2<1];
Az=Simplify[z"4 fgz"2,0<z<1];
Bz=Simplify[2 z*3 fgzr2-zA2 B4z,0<z<1];

+If we make the previous change of variable, the equations of motion arex

Eql=Simplify[Az D[¢1[z],Zz,z]+Bz[1,1]-D[¢1[z],z]+Bz[1,2]~D[$2[z],z]+C4z[[1,1]$1[z]+C4Zz[1,2]¢$2[z],0<2z<1]}
Eq2=Simplify[Az D[¢2[z],z,z]+Bz[2,2]D[¢2[z],z]+Bz[2,1]-D[¢1[z],z]+C4z[[2,2] ~$2[z]+C4z[2,1] ~¢1[z],0<z<1]}

KK AR KRR AR AR KRR AR AR KRR AR IR KRR AR AR KRR AR AR KRR AR AR IR R AR AR IR R AR AR IR R AR AR IR R AR AR IR R AR AR KR F AR AR IR AR AR RA K AR R RA KK

N I T T T T T ™™
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APPENDIX C. MATHEMATICA CODE

+Here we expand the equation of motion in Tylor seriess

SERIES[mO_,AO_,qO_,wE)_,ORDH_,zE)_]:=( *20 is 1(1l+1) where 1 is angular momentum of the deformations

param={};

param={w-w0 ,qh[0]>q0 ,0h[0]5¢0 ,A»210 }}

¢1[z_]:=sum[qh[i](z-l)i,{i,e,ORDH+20)]//.param;

$2[z_]:=Sum [wh[i] (z-1),(i,0,0RDH +ze)] //.param;

Eql;

Eq2;

ss=Series[{Eql,Eq2}//.param,{z,1,0RDH}];

yh=Union[Table[gh[i],{i,1,0RDH}],Table[¢h[i],{i,1,0RDH}]]};
eqs=Union[Table[SeriesCoefficient[ss[1],1]==0,{i,1,0RDH}],Table[SeriesCoefficient[ss[2],7]1==0,{i,1,0RDH}]];
systH=Solve[eqs,yh][1];

qn=Sum[qh[i](z-l)i,(i,G,ORDH)]//.Union[param,systH];
wn=Sum[wh[i](z-1)i,(i,0,0RDH)]//.Union[param,systH];

{qn,en}/.z»z0

)s

DET [wO_,20_,0RDH_,z0_]:= «This is te determinat of the matrix S«
$10=SERIES [w0 ,10 ,1,0,0RDH,z0]}
all=S10[1];
212=S10[2];
S01=SERIES[w0 ,10 ,0,1,0RDH,z07]}
a21=S01[1];
222=S01[2];
Det[{{all,al2},{a21,a22}}]
M
*We build a loop where at each turn we solve the equation detS=0, finding a
frequency that tends to a value the larger the order of expansion

xi=20}

xf=101;

dim=xf-xi;

dx= (xf-xi)/dim;

TT=Table[Null, {dim}];

XX=X1}

200=23

Xg=0.4+.1 i (+guess frequency«);

Monitor[
For[ii=1,7i<dim+1,
ff[XX_?NumberQ] : =DET [XX ,100 ,xx,10A (-10)];
Z=FindRoot [ff[XX], {XX,Xg}];
Xg=XX/.Z3
check=Abs [ff[Xg]]};
TTLii]={N[xx],Xg,check};
Fi++s

xx=xx+dx],{i1,N[xx],Xg,check}];
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APPENDIX

INTEGRABILITY CONDITIONS

Depending on the viewpoint, we have integrability conditions to describe the geometry of

an extended object at a fixed time, X;, once this undergo an ADM split.

D.0.1 Z; embedded in m

If 3, is embedded into m, x® = X*(u?), with u4 being the local coordinates in X; and
A =1,2,...,p., the orthonormal basis is provided by {€%4 = 04X%,¢&%}. This satisfies
Zab€®a8? =0, g.pE%P = -1 and gope®acs = hap where hap is the spacelike metric

associated to . The corresponding Gauss-Weingarten (GW) equations are

Vae®p =Gz +kapé?,

(D.1)
VAl =kpphBCeic,

where V4 =€%4V,, kap = kpa is the extrinsic curvature of X; associated to the normal

&% and Fg B stands for the connection compatible with A 4p.

The intrinsic and extrinsic geometries for the embedding under consideration must

satisfy the integrability conditions

b d
(D.2a) Rabed€® A€’ B c€”p =Rapcp —kapksc +kacksp,

(D.2b) Rapeac® a€®BeCcE? = Dpkpc — Dok ac,

where R spcp is the Riemann tensor associated to the spacelike manifold X; and 2,4 is

the covariant derivative compatible with A 4.
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APPENDIX D. INTEGRABILITY CONDITIONS

D.0.2 Z; embedded in .#

If ¥, is embedded into ., x* = X*(u?), the orthonormal basis is provided by {e#4 =
0 XH,EH, nH;}. This satisfieseg-E =€ep-n;=¢&n;=0,EE=-1, ni-n;= 6ij ande€g-€g = hAB.

The corresponding GW equations are

D et =TS get o+ kapé —Lo'n;,
(D.3) D&t =kaphBCetc—Lant,,

DAn”i ZLZBhBCG“C—LAlf”+O'A”n”j,

where Dy =€ 5,9, and 2, being the background covariant derivative, qu B= L}é 4 1s the
extrinsic curvature of Z; associated to the normal n*;. Additionally, we have introduced
Lt :=€%48K 2 b and 04 1= €% 4w, . Observe that the tangent-normal projection of the
worldvolume extrinsic curvature is in fact a piece of a non-trivial twist potential given
by La’ =nt-Dy¢.

The intrinsic and extrinsic geometries for the embedding under consideration must

satisfy the integrability conditions

(D.4a) 0=-Rapcp —kacksp +kpckap +L'ycLepi—LiycLapi,
(D.4b) 0=Pakpc—PBkac+La'Lpci—Lp'Laci,

(D.4c) 0=PsLY,~PpLY+La"kpc —Lp'kac,

(D.4d) 0=P4Lg' — DL A" +L A kpc—Lg kac,

(D.4e) 0=-QY, +La%"L} ~Lp'L, .~ La'Lg’ +Lp'L4’,

where QXB :=Ppo sl —Daop" is the curvature tensor associated with the gauge field
04" and 9, is the O(N — p — 1) covariant derivative acting on the normal indices

associated with the connection g4 %.
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APPENDIX

SINGULAR SECOND-ORDER SYSTEMS

E.1 Dirac Method

In this section we discuss brieflly the Dirac Method for Hamiltonian systems with
constrains in a field theory, following the references [37, 38, 40, 58, 61] .

We consider the action
(E.1) S [cDA (x)] - f dtL = f dtdPx L (@A,aacpA),

where L is the Lagrangian of the system, % is the density Lagrangian and, ®* are the

field variables. Define the conjugate canonical momentum associated to fields @4 as

oL

(E.2) Py=——:,
47 50A

where the dot over P4 represents the derivative concerning the parameter ¢. Performing

a Legandre transformation ,one can write the action in (E.1) in term of a Hamiltonian

density #o = PA 94 - &,
(E.3) S = f dtdpx(PAch—ch) = f dtH,,

where Hc = [ dPx7€ is the canonical Hamiltonian.

By defining the Poisson brackets of two functions, A and B, of phase space as

6A 6B 6A OB
SDASP, OPp 6DA°

(E.4) {A,B} =
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We see that H. generates the temporal evolution of canonical variables, i.e.

. oH,
4 = (04, H,} = —=,
0Py
(E.5) SH
9 c
Pp={Py,H.}= “30A”

We are interested in working with singular systems. In this kind of systems the determi-

nant of Hessian matrix, #4p, is equal to zero

2

(E.6) e Han| = det | 5 a0dn

>

this implies that accelerations @4 cannot be only determined by fields @4 and its
derivatives. Additional, the vanishing of this determinant leads to not all linear momenta

being independent and there are some relations
(E.7) Pm (QDA,PA,Gi(DA,aiPA)zO m=1,- .M.

They are called primary constrictions for emphasizing that one does not use the equation
of motion to arrive at them but only momenta definition (E.2). Here, 0; denotes the
spacial derivative and the symbol = reads as weekly zero and means that is equal to zero
on the sub-manifold, I', of phase space that is defined by the primary constrains.

Consider there are M’ independent relations of the form (E.2). So M’ rows of Hessian

matrix must be null, therefore
(E.8) M' =N —Rank(#4p).

Assuming that the rank of the Hessian matrix is constant, this implies that the number
of primary constraints is fixed. On the other hand, since there are no restrictions to (E.2)
that demand that they are independent, in principle, M’ < M. Moreover, independent
constraints, ¢, do not have to come directly from (E.2), as it is for ¢,,. They can be
combinations of these latter. So it is essential to calculate the null vector of the Hessian
matrix. By denoting, V") as the components of null vectors and ¢,, as the primary

constraints, then we have the primary independent constraints are written as follows
(E.9) Pm' = V,Zl/(pm-

The Hamiltonian H. is not unique and it has to be replaced by a effective Hamiltonian

H, called primary Hamiltonian [61],
(E.10) H=H +u"¢n~H,,
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H generates new equation of motion

: .. OH 6
BA = (04, H) = w4 um oo,
5Pa 5Pa
(E.11) . - 6H , 6¢m
Pa={Ps,Hl = ———F —u" 2%,
4= = =50 7% Soa
¢m:07

these equations of motion are consistent with variation 6®4 and 6P4 because they
preserve the constrains ¢,, = 0. Now consistency conditions have to be applied to avoid

that when the system evolves, the sub-manifold I' changes. Thus, one assumes that
(E.12) Pn ={pn, HY = {@n, He} + ™ (@, 9} = 0,

the equation in (E.12) can be represented as a linear system equation

(E.13) hp+W,nu™ =0,

or in a matrix form as

(E.14) h+Wu=0,

here h and u are vectors and W is a matrix. There are the following cases for this matrix

system:

* (1) If h #0 and detW # 0, we can determine all Lagrangian multipliers since there
exists the inverse of W, denoted by W1, and then

(E.15) u™=—(WH™ h,.

* (1) If h # 0 and detW = 0. In this case, the number of multipliers, ©™, that can
be determined is equal to the rank of the matrix W, K = rank(W). In contrast,
N’ multipliers cannot be determined, where N’ is the nullity of matrix W. If one
calculates the null vector, Vi (i = 1,---,N’), of matrix W. By definition, they satisfy
WV = 0. This implies that

(E.16) AV =0.

these are new relations that are satisfied by the canonical variables, i.e., there are

new constrains. They are known as secondary constraints.
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* (1i1) If A =0 and detW # 0. Taking into account the equation (E.14) , we directly

obtain

(E.17) Wu ~0,

the only solution to the last equation is the trivial solution, leading to H = H.,.
* (iv) If h =0 and detW = 0. For this case, like the previous one, we have

(E.18) Wu =0.

However, due to the fact that detW = 0, only some multipliers can be weakly
determined. Noteworthy that the fact that A = 0 could come from null canonical

Hamiltonian.

By virtue of consistency conditions, secondary constraints must also be preserved over
time. This will involve iterating over the previous steps applied to the secondary con-
straints. This algorithm must be repeated if new restrictions appear until no new ones.
This process ends after a finite number of iterations. Once the information from the
consistency relations on the primary constraints is exhausted and with the addition
of secondary constraints, a total Hamiltonian can be constructed, which will contain
information on all the constraints found so far, both primary and secondary, this will be
(E.19) Hr:=H.+uf ¢,
where ¢ are all constraints, and the equations of motion take the following form

dA =~ (@, Hr},
(E.20) .

Py ~{Px,Hr}.

Taking the consistency conditions
(E21) (ppz{(pp,HT}:{(pp,Hc}+uq{(pp,(Pq}20,

where p,q =1,---,T with T the number of all constraints. As we have already mentioned,
the consistency relations give a linear equations system to multipliers u, whose general

solution can be written as follows
(E.22) ul=U9+V1,

UY is the particular solution to the inomogeneous equations and V¢ is the general

solution to homogeneous system,
(E.23) VUepp,pqt = 0.
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In addition, V¢ can be written as a linear combination of independent solutions of
homogeneous system, i.e., VI = viViq, where i = 1,---,k, where k& is the number of

independent solutions of homogeneous system, then
(E.24) ud =U9+0' VY.

since v’ are arbitrary, then u9 can be separated in two parts, one is fixed by consistency
conditions and the another is indeterminate. This must be reflected in the total Hamil-
tonian and, of course, in the equations of motion. By substituting (E.24) in the total

Hamiltonian, we have
(E.25) Hp=H.+U%,+v'¢p;,

where ¢; = Vl.q(pq. If we write the temporal evolution of any function, F, of phase space

taking into account (E.24), we get
(E.26) F~{F,Hr} =~ {F,H'}+v'{F, ¢},

where we have defined H' := H. + U%¢,. These equations have % arbitrary functions and
are equivalent to the Lagrangian equations. The fact that arbitrary functions appear
makes a fundamental difference since the initial conditions no longer have a unique

evolution but remain indeterminate until arbitrary functions.

E.1.1 First and second class constraints

Until now, it has not been necessary to make a substantial difference between primary
and secondary constraints since they are treated at the same level. Notwithstanding, it
will be handy to split the constraints into first and second class.

Let be a functional of the space phase, F'. It is first class if its Poisson bracket with all

constraints is weakly zero, i.e.
(E.27) {F,pp}t=0.

On the contrary F is a second class constraint. Remember p =1,---,j and j the total
number of constraints.

If F is a first class constraint, then {F,¢,} must be strongly equal to zero to any linear
combination of constraints ¢ because these are the only independent quantities that are

weakly zero, therefore
(E.28) {F,0p} = f59q.
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By using the definitions of a first or second class constrain, and taking the following

Poisson bracket
(E.29) (01,00} = V01,00 = VIps, 00t + 1V 0p)0; = Vg, 00},

taking into account that Vij is a solution of homogeneous system equation for multipliers

u, this implies that
(E.30) {pi,pp} =0,

thus, ¢; = Vl.j ¢; is a first class constraint. One can proof that H' is also a first class
constraint.

We denote the first class constraint as y, and the second class are indicated by y. Keep
in mind that the first-class constraints do not have to be directly one of the primary
or secondary constraints. In general, they can be combinations of these. To find them
correctly, it will be necessary to calculate the null vectors of the matrix whose entries are
the Poisson brackets between the constraints. Later, one contracts null vectors with the
J constraints, and finally, one will find the correct first-class constraints. For the above,

let us look at the matrix,
(E.31) W,q = {0p, 04},

this has dimension j x j and ¢, are all constraints both secondary and primary. If
detW' =~ 0, then there are j — R first class constraints (R is the rank of W’).

Proof:

If detW’' = 0 in I, then the nullity of W' must be j — R. Therefore, j — R null vectors
can be found, we denote them by w; withi=1,---,7— R, such that

(E.32) W {pp,9q} =0,
implying
(E.33) {0l p, 04} =0,

evidently, the constraints wf ¢p form a set of j — R first class constraints. Thus, all first

class constrains of a theory can be written as
(E.34) Yi= wfq)p.
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It is a systematic way to find the first class constraints. On the another hand, the matrix

W4 can be written in the following way

(E.35) Wyo = 0 0
. pqg — 0 Caﬁ jxj,

where Cy g = {xq, xp}, this is a R x R matrix, R is the number of second class constraints
and it coincides with the rank of the matrix W’'. In addition, one can proof that R must

be even.

E.1.2 Gauge Transformations

Up to this point, ways to find the multipliers, u, associated with the theory have been
addressed. However, the presence of such arbitrary multipliers, either in the equations
of motion or in the solutions, implies that the phase space variables ¢’ and p; can not be
uniquely determined from initial conditions, so they have no physical meaning. However,
these are deterministic theories at the classical level, so two states that share the same
initial conditions should not be physically different. When two different functions provide
the same physical state, it said they are related under a gauge transformation.

Consider a dynamical variable F', with initial value Fy, its value at time 6% is
(E.36) F(6t):F0+6t[{F,H’}+vi{F,yi}],

remember that v? are arbitrary, suppose we take another value of it. That would give a
different F'(6t), the difference being

(E.37) AF(5¢) = F(5t) - F'(6t) = 6t (vi - v'i) {F,yi} =60, v},

the last expression represents a transformation of dynamical variable F, where gen-
erating functions are the first class constraints y;. Dirac postulated that all first class
constrains are generating functions of transformations, that lead to changes in the
canonical variables ®4 and Py4, that do not affect the physical state. They are known as
gauge transformations.

Now if we apply two gauge transformation with generating functions y; and y! and after
we apply the same transformation in the reverse order and calculate the difference, we

obtain

(E.38) AF =o' [({F, i)y, = UF, v,y = oo (F, vy,
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taking into account a theorem which proof that Poisson bracket of two first class con-
straints is also a first class constraint and the Dirac postulate, we arrive that Poisson

bracket of two first class constraints also generates a gauge transformation.

E.1.3 Degrees of Freedom Count

With all concepts that have been given in this section, it is possible to count of degrees of
freedom (DOF) of the system. Remember that DOF of a system is the number of physical
independent variables that are necessary to describe it.

Taking as a guide the count in the elemental mechanics, the number of generalized
coordinates minus number of independent restrictions. Extrapolating to phase space, the
count of DOF is

(E.39) #DOF = %[(#CV) —(#SCC)—-2#FCO)],

where the number of canonical variables, second class constraints, first class constraints
are denoted by #CV ,#SCC ,#FCC respectively. The factor 1/2 appears to compensate
that the DOF only refer to the generalized coordinates, the number 2 accompanies the
first-class restrictions because they have a double role, both as a constraint and generator

of a gauge transformation.

E.1.4 Dirac Bracket

As we have mentioned, the total hamiltonian Hp contains all system constraints. How-
ever, there is no distinction between first and second class constraints when one writes
this Hamiltonian. Writing a new function called Extended Hamiltonian (Hg = H' + viyi),
which takes an explicit separation between first and second constraints, the evolution of

a function of phase space is given by
(E.40) F~{F Hg}.

Additionally, one can build called Dirac bracket. For this consider two function of phase

space, F'1 and Fy, we define Dirac bracket as follow

(E.41) (F1,Falp = {F1,Fab - (F1,xa} (C7Y) ™ (xp. Fa).

The equation of motion of dynamic variable can be written using Dirac bracket as follows
(E.42) F ={F,Hg}p,
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similarly, a gauge transformation of a function F' can be rewritten as
(E.43) {F,yi}={F,yilp,

Dirac bracket plays a crucial role in the quantization of a gauge theory since it is the one

that is promoted to a commutator instead of Poisson bracket.

E.2 Ostrogradsky-Hamilton Approach

The Hamiltonian formalism, used to study dynamic systems, is restricted to systems that
depend solely on first derivatives. Ostrogradsky expanded this analysis to higher-order
systems [83]. He discovered an instability in such systems, now known as Ostrogradsky
instability, because the Hamiltonian is unbounded below. Consequently, negative energy
values can arise, making it impossible to find a minimum energy state. These higher-
order models are flawed at the quantum level due to the existence of ghost states with
negative norms, which can potentially violate unitarity [59]. However, they possess
appealing properties, such as improved convergence of Feynman diagrams. Consequently,
higher-order theories such as [43, 65, 93] have gained significant interest.

In this section, we demonstrate how to utilize the Ostrogradsky method, following the
references [79, 111, 112].

Consider a system with an action given by
(E.44) S[o4] = fdtL = fdtdprg (@A,aiQA,a§®A,¢A,d5A) :

To conduct a Hamiltonian analysis, it is possible to apply a Legendre transformation. In
this particular case, it is necessary to take into account 4n canonical coordinates due to
the dependence of the Lagrangian function on second-order time derivatives. They are

given in the following way

oL .
q)?:q)Ay pA:6ch_PA,
(E.45) s,
A _ HA _
CDZ—CD , PA—@,

the Hamiltonian function can be written as follows
(E.46) H,=®{pa+®5Ps—L.

It is important to observe that the final Hamiltonian function exhibits linearity with

respect to the momentum p 4. This characteristic indicates the instability of the system,
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as pa can assume negative values, resulting in the absence of a lower bound for the
energy.
The equation of motion can be expressed using this canonical Hamiltonian function in
the following manner:

HA 0H, BA — O0H,

“opa’ 0Py

EA4
(E-A47) _ 0H, , _ OH,
pA_ OQDA’ A~ a(DA,

in a similar manner to a first-order system, we can establish a Poisson bracket in this
case as well and utilize it to formulate the equations of motion. Let’s consider two
functions, F' and G, defined on the phase space. The Poisson bracket between them is
defined as follows

O0F 6G OF 6G OF 6G OF oG

5OA Ops DA 0P Opa ODA O0Ps 5DA”

Therefore the equation of motion can be written as

(E.48) {F,G} =

q)A = {CDA,HC}, (DA = {d)AaHC}’
pa=1{pa,Hcl, Pa={Pa,H.}.

Thus far, we have made the assumption that the Lagrangian function is non-degenerate,

(E.49)

meaning that the determinant of the Hessian matrix is nonzero. Under this condition, it
is not possible to eliminate the second-time derivative of any field ®* through integration
by parts.
If the second-order system is singular, it will involve constraints. Similar to a first-order
system, it is not possible to express all accelerations ®4 solely in terms of canonical
variables p4, Pa, @4, and 4. Consequently, some equations of the form
(E.50) Py= 6—{1,

oDA
imply relations between canonical variables that we can write as follows

(E.51) Om (PA,pA,cDA,d)A) -0,

Here, the variables ¢,, represent the primary constraints. At this stage, the Dirac
algorithm can be applied in a similar manner to the approach employed in the previous
section for first-order systems. As a result, primary, secondary, first-class, and second-
class constraints can be obtained. It is important to consider the Poisson bracket in

equation (E.48) when constructing the Dirac bracket. Thus,

(E.52) #DOF = %[(#CV) —(#SCC)—-2#FCO)],
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By employing an extension of the Dirac algorithm, it is possible to perform the corre-
sponding Hamiltonian analysis for singular second-order systems.

Dirac’s technique is particularly suitable for investigating the Hamiltonian formulation
of a theory where states are defined on a general spacelike surface, even in higher-order
systems. The fundamental concept involves introducing a set of curvilinear spacetime
coordinates, x = (x°,---,x"), into the theory. The equation x° = cte defines a generic
spacelike surface, while also introducing arbitrary coordinates on that surface. This
step becomes necessary when working within a general Riemannian manifold where
no natural choice for spatial coordinates is available. The insights gained from this
comprehensive analysis will prove invaluable in the subsequent section, as we apply

them to study the Regge-Teitelboim model as a second-order system.
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APPENDIX

DICTIONARY OF VARIATION AND FUNTIONAL
DERIVATIVES OF CONSTRAINTS

In this appendix we present the variation of important geometric objects in the study of
Regge-Teitelboim a la ADM approach. In this approach, we take into account X* and X*

are independent variables.

F.1 Variation different geometric objects

The variation of the different geometric objects is given in terms of the variation of the
variable set {X*, X}

NA

H_ _(z. AB u I I3
(F.1) S = —(£-Da6X)hABe B+(N 56X " @A(SX)nJ
(F.2) gn“iz—(ni-@AéX)hABe“B+(N 6X——n @AéX)E“
(F3) 6hAB = 2E(A -@B)5X
(F.4) ShAB = —2hAChBD€(B D6 X
(F.5) 6h=2hhABep - Du6X
(F.6) SN =N49 - 9,6X —&-6X
E7) SNA = —2n4CND) (c.9p6X) + hABX - D6 X + hABep - 6X
(F.8) SLABi=—9§ipﬁ-905X)kAB+-l(nﬁsx)kAB—nﬁgggmsx

' N N
~ . N¢ /. 1, . .

i_ _ . BAi _ 2Y i, - i,

(F.9) SL' = —2(ep-Da0X)L ¥ (n @(Jax)mN(n 5X)k

_hAB (ni -@A@Bax)
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F.2 Functional derivatives of the constraints

F.2.1 functional derivatives of primary constraints

8A
SXH
55
SXH
55

(F.12) =0,
6pu

(F.10)

(F.11)

0SS .
F.13 —Z =AXH
(F.13) 5P, )

05

SXH
574
—L =0
SXH
574
(F.16) —2L -9
Opu
(F.17) N =140, XH = L XM
. 5P# A 1 ,
W VR VA
(F.18) 6}(—(2 =—-Da (([)lWNALi fu) +94 (([)l ThABLiEuB

N

(F.14) = —0A(A*P,) = —%;P,,

(F.15)

Vh )
-Du (2¢“§L§“9e,13) —Da (qu—NAk n,”')

VA
+DADB (d"%hwnm),

%—_ i\/—FL-E — bt
oxn - P zlicn=?
571/(75
(F.20) —=0

Opy

57//(} -
(F21) m— n-q,

(F.19)
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F.2.2 functional derivatives of secondary constraints

(F.22)

(F.23)
(F.24)
(F.25)

(F.26)

(F.27)

(F.28)

(F.29)

(F.30)

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

where

(F.38)

oS -\7 AB A
xu = M\put 2AP - DaX)nBe, g~ Da(2ANAP,)
~2ANKAB(P -2, 95X) &, —2ANB(P -2, 25 X)1"Ce ¢
1
—5\/l7 AGABCP, 5D, D X D DD XP ),
+A\/FGABCDLAL.AB]€CD nyi— A\/FhABéij (@Ani . @an) 5#
~ - . 1 .
- [@A (2AN\/FhABéU»@Bnf)-51v ny,
6S_A,= AX”,
Opu
5 .
<SSTA =2ANA D4 X" + AIN?hAB - NANB)YD, D XH,
u
5V
67[; = —OA(AApH) =-LiPu
5V
ﬁ =—0a(N*P,) = -L; Py,
5V
5_A = Ao, XH = L XF,
Pu
6V . .
s = MoaXt= X",
o
Ws WA
oxu = 2aW
oW= ~ . 1~ [~ .
[0} AB AB
Sxn =P nZa® W ey + 0, (@Bcpl YD) )nu,-
v a1 :
+W q)iLALL jn”J + ﬁ(p . sf)q)l nul
1 . . .
- [NALA (P nj)+ aVRLATLA | 0in,f,
SW=
o O
u
W . .
6Tf1’ = N4, (@'nt)) = Ly (@'nH)),
u

. NA . . .
RAB(p-ep)®in,’ + w5 (P-OPin' + Dp®i(P nHABX,

- [P ENCLy (P np + VERAPLE Ly | @inyt + 2NARPC (P )P Dy

NANB
N

. NA . ) ~
L/(P-nj)+ \/FWLBJ-LBJ ®;n,t +2VRRBCLY pdic, o

—\/FhABLCi@Cq)i €uB + \/FhABhCDL%C@D(Di Spu— \/FkAB@B(Di nyi

N4 ~ - . . . NA A )
+ﬁ7h309390c1>,- nu' + VRRABLC ;LL . ®;n,J + \/FWLBJ-LB’QD,- n.
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and

T4 = —2ANRAB(P-2pX)&,+2ANAKBC(P - 2pX)e 0 —2ANARECN(P - 2520 X)¢),
+ 2ANCRABN(P-259cX)&, —2ANBRCP NAP - 2592cX)eun
+ 2ANZRACKED(P- DD X)eup + D [ ANZRAP - NANP)P, |

1
- 5A\/FNAGBCDEHaﬁ@B@cX“@D@EXﬁg‘”
1
2
+ AVRENAGECPELL .kpgnui + 25(ANVRGABCP T, 2c2p X")

- A\/EhBC(sij (@Bni . @an) NA fp - AN\/FhABhCD(sij (@Cni . @Dnj) €uB

+ 2ANVERABRCDs,, (@Bni -@Cnf)eﬂp - [@C (2AN\/EhCD5,-J-9§DnJ') -ep hAB] nyt
NA
N

ANVREGPEF T D0 Dp X DpDr XP WABe g + 2ANVR (LABL — LACL B e
B % i i 2

i
ny .

(F.39) [@C (2AN\/F rBCs; j@BnJ) N
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Primary-primary constraints

(S, S} =0,
(G.1) A= AA=a4,
{,5&,%} = 7//(7), ‘P/i - ,1([)1”

Primary-secondary constraints
{yA,SA} = _y/ll _SA17
{yA)V]\} = _yfl‘\ﬂ)
N, Wel =4,

(G.2)

3,80 =S 2,0 =73, = Vi,

5, Vi) = 7/[,1,7\],

{15, W3} =%,
where
(G.3) M =205,
(G.4) A1 =AA,
(G.5) AL =2ANBopAA,
(G.6) A = A2A,

A Ari_ By Ai NANE

@7 A =A<pi(N Li-NBLgAi- Ly )

) . NANB .
(G.8) A4 =Ad; (NAL‘ ~NBLpAT - TLBl),
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CONSTRAINT ALGEBRA

{7/;‘{,7/;‘{/} = O,
5. %51 =0,
{W(_ﬁ’W@'} =0,

W5 Sy =Fny + 5, =W, =~ Wa»
{W(-!;,W&,} = Wt_ﬁs +€,

= 1y~ T3, =i

¢, = Ap'NE—p'NAD4 A+ ANAD ¢,

DL = A¢,
A .
A3 =4r¢iLal,

= N piABLg! + piABLgAT,
Ph =N Dy,

. A . .
5= ¢'®;La’,
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and
G9 o = f AD AP VR RAB(n; - 25 X),
>
(G.10) 2 = —L\/FhABACQAqaiLgC,
NI ) 1 . NI . )
(G11) € = fzW¢‘q>iLAJ(NALJ~+NLAj)—Nqal(bi(p-fnqunj(L{‘BLJAB—LiLJ)

Secondary-secondary constraints

S, Sat =S, +#5,, Vi, Vit=Viiip
(G12) {SA’VT\}:VL_yfﬂA’ {VK,W(T)}:y/l5 +7/15+W(7)4+W6)4+g7
{SA,W&)}:y}LG*‘V%"‘@, {W@,W&')/}:—%sﬁ-g,
where
(G.13) Ada = (N?RAB_NANBYADADN — N DD N),
(G.14) o) = 2N3RABL, (AN - N'2pN),
(G.15) Ay = AWNZRBC —-NBNCY2p2cA* + Rppc? AD),
1 . . .
(G.16) A5 =~ [AANPRACLpe @i - ZRNALAIO - A LA’ 201
_ . _ . N€
(G.17) A = AAQA(NBLBC‘)@+AA@A(NBLBL)WcDi
ANB I~ Ci Dri aC NB c
(G.18) + A W NDgD®;Lpo~"'—ky LBDN ¢)i+W(LA 2pP; N
(G.19) - NkaCLp'®))],
(G.20) ¢y = 2AANB (LACJ'LgC—LAJ'LB")cDj,
(G.21) Dy = AP,
(G.22) ¢L = NhBKp (@240 -/ 5,0,
(G.23) A§ = AD;|(NZhAP + NANP) (DAL g ~ L pka) + NNCGALA!
, NANC . NANBNC _ .
(G.24) + 2NALpCi9,NB 12 L’B@ANB+T@AL’B
~ . Li C
(G.25) + ADLD; [Z(hABN2+NANB)(L’CB+BTN)],
AB2 . vAnB) 2aL'B Agi B
(G.26) e = —AD; (h N2+ NAN )T+2N LigouN
P AB A2 A 7B LiB
(G.27) + A@Afb,-[—z(h NZ 4+ NAN )T]

106



and

(G.28) 2 =f {ACDi [2NLAi (P -QAX) _9N (NBLA" +NLABi)(P - DsDpX)
z
(G.29) — [N2(LIALHA - L1 gpL/AB) - NN4 (L'L s ~ L' g L% 4 )] (P-n))
(G.30) +Vh [%L‘LJL i+ %VU'LJ‘CDL jep ~NLILABL! yp ~NL AL spL'P
(G.31) ~NLACLoPILY y + ANL s LY LB + aNCL ALY 4L - 2NLIL AL 4 |
(G.32) + AT D; [NA (p - ni) - (P : n") (NA@CNC +N@AN) —9p (P : ni) (hABN2 +NANB)
(G.33) +VEN ((kAB - hABk)LiB +@BL"AB) +2VA NBGpL 14T _ \/FNC@ALiC]
(G.34) +ADADp®; (2VRLENA)},
9 . . L
& = L\/F{NA[ANB](LAC’LJBC —LA'Lp))L;j®; —2A°LeV LA LA j0;

+ 2hABRPICYEAC LD Da®; + AP(LLp kA —kpcLCA)D 5 @;
(G.35) + 2APLARPCLY LI @+ 20 BRI AL D4 D04,

X

F = f{[—hAB(p-aAX)+NALQChCB(P-n1)+\/FLAZL;“B
)

5, (' Dp®7 - @ G

107






[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

A.

BIBLIOGRAPHY

AGUILAR-SALAS AND E. R0JAS, Hamilton—jacobi approach for linearly
acceleration-dependent lagrangians, Annals of Physics, 430 (2021), p. 168507.

J. ARMAS AND J. TARRIO, On actions for (entangling) surfaces and dcfts, Journal

G.

of High Energy Physics, 2018 (2018), pp. 1-77.

ARREAGA, R. CAPOVILLA, AND J. GUVEN, Noether currents for bosonic branes,
Annals of Physics, 279 (2000), pp. 126-158.

. BAGATELLA-FLORES, C. CAMPUZANO, M. CRUZ, AND E. RoJAS, Covariant ap-

proach of perturbations in lovelock type brane gravity, Classical and Quantum
Gravity, 33 (2016), p. 245012.

. BARNAVELI AND M. GOGBERASHVILI, Antigravitating bubbles, arXiv preprint

hep-ph/9505412, (1995).

. BASU, A. H. GUTH, AND A. VILENKIN, Quantum creation of topological defects

during inflation, Physical Review D, 44 (1991), p. 340.

. BAZANSKI, Relative dynamics of the classical theory of fields, Acta Physica

Polonica. Series B, 7 (1976), pp. 305-325.

S. L. BAZANSKI, Dynamics of relative motion of test particles in general relativity,

in Annales de I'THP Physique théorique, vol. 27, 1977, pp. 145-166.

S. L. BAZANSKI, Hamilton—jacobi formalism for geodesics and geodesic deviations,

L.

G.

Journal of mathematical physics, 30 (1989), pp. 1018-1029.

BERGSTROM AND A. GOOBAR, Cosmology and particle astrophysics, Springer
Science & Business Media, 2006.

BERTONE AND D. HOOPER, History of dark matter, Reviews of Modern Physics,
90 (2018), p. 045002.

109



BIBLIOGRAPHY

[12] M. BLAU, Lecture notes on general relativity, Albert Einstein Center for Funda-
mental Physics Bern, 2011.

[13] P. B. CANHAM, The minimum energy of bending as a possible explanation of the
biconcave shape of the human red blood cell, Journal of theoretical biology, 26
(1970), pp. 61-81.

[14] R. CAPOVILLA AND G. CRUZ, A covariant simultaneous action for branes, Annals
of Physics, 411 (2019), p. 167959.

[15] R. CAPOVILLA, G. CRUZ, AND E. Y. LOPEZ, Covariant higher order perturbations
of branes in curved spacetime, Physical Review D, 105 (2022), p. 025011.

[16] R. CAPOVILLA, A. ESCALANTE, J. GUVEN, AND E. R0oJAS, Hamiltonian dynam-
ics of extended objects: Regge-teitelboim model, arXiv preprint gr-qc/0603126,
(2006).

[17] R. CAPOVILLA AND J. GUVEN, Geometry of deformations of relativistic membranes,
Physical Review D, 51 (1995), p. 6736.

[18] R. CAPOVILLA, J. GUVEN, AND E. R0OJAS, Adm worldvolume geometry, Nuclear
Physics B-Proceedings Supplements, 88 (2000), pp. 337-340.

[191 ——, Hamiltonian dynamics of extended objects, Classical and Quantum Gravity,
21 (2004), p. 5563.

[20] E. CARTAN, Sur la possibilité de plonger un espace riemannien donné dans un
espace euclidien, Ann. Soc. Polon. Math., 6 (1927), pp. 1-7.

[21] B. CARTER, Basic brane theory, Classical and Quantum Gravity, 9 (1992), p. S19.

[22] B. CARTER, Outer curvature and conformal geometry of an imbedding, Journal of
Geometry and Physics, 8 (1992), pp. 53—88.

[23] —, Perturbation dynamics for membranes and strings governed by the dirac-

goto-nambu action in curved space, Physical Review D, 48 (1993), p. 4835.

[24] ——, Equations of motion of a stiff geodynamic string or higher brane, Classical
and Quantum Gravity, 11 (1994), p. 2677.

[25] —, Essentials of classical brane dynamics, International Journal of Theoretical
Physics, 40 (2001), pp. 2099-2129.

110



BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

L. CASETTI, C. CLEMENTI, AND M. PETTINI, Riemannian theory of hamiltonian
chaos and lyapunov exponents, Physical Review E, 54 (1996), p. 5969.

E. J. COPELAND, M. SAMI, AND S. TSUJIKAWA, Dynamics of dark energy, Inter-
national Journal of Modern Physics D, 15 (2006), pp. 1753-1935.

R. CORDERO, A. MOLGADO, AND E. R0OJAS, Ostrogradski approach for the regge-
teitelboim type cosmology, Physical Review D, 79 (2009), p. 024024.

M. CRUZ, R. GOMEZ-CORTES, A. MOLGADO, AND E. ROJAS, Hamiltonian analy-
sis for linearly acceleration-dependent lagrangians, Journal of Mathematical
Physics, 57 (2016), p. 062903.

M. CrRUZ AND E. R0OJAS, Born—infeld extension of lovelock brane gravity, Classical
and Quantum Gravity, 30 (2013), p. 115012.

A. DAVIDSON AND D. KARASIK, Quantum gravity of a brane-like universe, Modern
Physics Letters A, 13 (1998), pp. 2187-2192.

A. DAVIDSON, D. KARASIK, AND Y. LEDERER, Cold dark matter from dark energy,
arXiv preprint gr-qc/0111107, (2001).

A. DE FELICE AND S. TSUJIKAWA, f(r) theories, Living Reviews in Relativity, 13
(2010), pp. 1-161.

H. DENG, Primordial black hole formation by vacuum bubbles. part ii, Journal of
Cosmology and Astroparticle Physics, 2020 (2020), p. 023.

H. DENG AND A. VILENKIN, Primordial black hole formation by vacuum bubbles,
Journal of Cosmology and Astroparticle Physics, 2017 (2017), p. 044.

S. DESER, F. PIRANI, AND D. ROBINSON, New embedding model of general
relativity, Physical Review D, 14 (1976), p. 3301.

P. A. DIRAC, The hamiltonian form of field dynamics, Canadian Journal of Mathe-
matics, 3 (1951), pp. 1-23.

P. A. M. DIRAC, Generalized hamiltonian dynamics, Canadian journal of mathe-
matics, 2 (1950), pp. 129-148.

—, An extensible model of the electron, Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, 268 (1962), pp. 57-67.

111



BIBLIOGRAPHY

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[61]

[52]

[53]

—, Lectures on quantum mechanics, vol. 2, Courier Corporation, 2001.

L. P. EISENHART, Introduction to differential geometry, Princeton University
Press, 2015.

N. ENGELHARDT AND S. FISCHETTI, Surface theory: the classical, the quantum,
and the holographic, Classical and Quantum Gravity, 36 (2019), p. 205002.

L. D. FADDEEV, A. A. SLAVNOV, AND G. PONTECORVO, Gauge fields: introduction
to quantum theory, CRC Press, 2018.

V. FERRARI, L. GUALTIERI, AND S. MARASSI, New approach to the study of
quasinormal modes of rotating stars, Physical Review D, 76 (2007), p. 104033.

A. FRIEDMAN, Local isometric imbedding of riemannian manifolds with indefinite
metrics, Journal of Mathematics and Mechanics, 10 (1961), pp. 625-649.

C. FRONSDAL, Completion and embedding of the schwarzschild solution, Physical
Review, 116 (1959), p. 778.

J. GARRIGA, Nucleation rates in flat and curved space, Physical Review D, 49
(1994), p. 6327.

J. GARRIGA AND A. VILENKIN, Perturbations on domain walls and strings: A
covariant theory, Physical Review D, 44 (1991), p. 1007.

—, Black holes from nucleating strings, Physical Review D, 47 (1993), p. 3265.

I. M. GELFAND, R. A. SILVERMAN, ET AL., Calculus of variations, Courier Corpo-
ration, 2000.

G. W. GIBBONS AND S. W. HAWKING, Action integrals and partition functions
in quantum gravity, in Euclidean Quantum Gravity, World Scientific, 1993,
pp. 233-237.

D. GITMAN AND I. V. TYUTIN, Quantization of fields with constraints, Springer
Science & Business Media, 2012.

G. L. GOON, K. HINTERBICHLER, AND M. TRODDEN, New class of effective field
theories from embedded branes, Physical Review Letters, 106 (2011), p. 231102.

112



BIBLIOGRAPHY

[54]

[55]

[56]

[67]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. GOTO, Relativistic quantum mechanics of one-dimensional mechanical contin-

uum and subsidiary condition of dual resonance model, Progress of Theoretical
Physics, 46 (1971), pp. 1560-1569.

R. GREGORY AND R. LAFLAMME, Black strings and p-branes are unstable, Physical

review letters, 70 (1993), p. 2837.

J. GUVEN, Covariant perturbations of domain walls in curved spacetime, Physical

Review D, 48 (1993), p. 4604.

—, Perturbations of a topological defect as a theory of coupled scalar fields in

curved space interacting with an external vector potential, Physical Review D,
48 (1993), p. 5562.

A. HANSON, T. REGGE, AND C. TEITELBOIM, Constrained hamiltonian systems,

Accademia Nazionale dei Lincei, 1976.

S. HAWKING, Who’s afraid of (higher derivative) ghosts?, in Quantum field theory

and quantum statistics: essays in honour of the sixtieth birthday of ES Fradkin.
V. 2,1987.

. HELFRICH, Elastic properties of lipid bilayers: theory and possible experiments,

Zeitschrift fiir Naturforschung c, 28 (1973), pp. 693-703.

. HENNEAUX AND C. TEITELBOIM, Quantization of gauge systems, in Quantiza-

tion of Gauge Systems, Princeton university press, 2020.

. T. HOROWITZ AND V. E. HUBENY, Quasinormal modes of ads black holes and

the approach to thermal equilibrium, Physical Review D, 62 (2000), p. 024027.

. IDA, Brane-world cosmology, Journal of High Energy Physics, 2000 (2000),

p- 014.

. JANET, Sur la possibilité de plonger un espace riemannien donné dans un

espace euclidien, Annales de la Société Polonaise de Mathématique T. 5 (1926),
(1927).

. KAKU, Superconformal gravity in hamiltonian form: Another approach to the

renormalization of gravitation, Physical Review D, 27 (1983), p. 2809.

113



BIBLIOGRAPHY

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

D. KARASIK AND A. DAVIDSON, Geodetic brane gravity, Physical Review D, 67
(2003), p. 064012.

E. KASNER, The impossibility of einstein fields immersed in flat space of five
dimensions, American Journal of Mathematics, 43 (1921), pp. 126-129.

M. KOT, A first course in the calculus of variations, vol. 72, American Mathematical
Society, 2014.

A. LARSEN AND M. AXENIDES, On string tunneling in power law inflationary
universes, Physics Letters B, 318 (1993), pp. 47-52.

A. LARSEN AND A. NICOLAIDIS, Second order perturbations of a macroscopic
string: Covariant approach, Physical Review D, 63 (2001), p. 125006.

D. LOVELOCK, The einstein tensor and its generalizations, Journal of Mathematical
Physics, 12 (1971), pp. 498-501.

R. MAARTENS, Geometry and dynamics of the brane-world, in Reference frames
and gravitomagnetism, World Scientific, 2001, pp. 93-119.

K.-1. MAEDA AND N. TUROK, Finite-width corrections to the nambu action for the
nielsen-olesen string, Physics Letters B, 202 (1988), pp. 376-380.

M. MAIA, On kaluza-klein relativity, General relativity and gravitation, 18 (1986),
pp. 695—699.

M. MARS, First-and second-order perturbations of hypersurfaces, Classical and
Quantum Gravity, 22 (2005), p. 3325.

A. MOLGADO AND E. R0JAS, Hamiltonian dynamics of gonihedric string theory,
International Journal of Modern Physics A, 36 (2021), p. 2150035.

V. MUKHANOV, Physical foundations of cosmology, Cambridge university press,
2005.

Y. NAMBU, Duality and hydrodynamics lectures at the copenhagen high energy
symp, 1970.

V. NESTERENKO, Singular lagrangians with higher derivatives, Journal of Physics
A: Mathematical and General, 22 (1989), p. 1673.

114



BIBLIOGRAPHY

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

V. NESTERENKO AND N. S. HAN, The hamiltonian formalism in the model of the
relativistic string with rigidity, International Journal of Modern Physics A, 3
(1988), pp. 2315—-2329.

S. NOJIRI, S. ODINTSOV, AND V. OIKONOMOU, Modified gravity theories on a
nutshell: inflation, bounce and late-time evolution, Physics Reports, 692 (2017),
pp. 1-104.

B. O’NEILL, Semi-Riemannian geometry with applications to relativity, Academic
press, 1983.

M. OSTROGRADSKY, Mémoire sur les équations différentielles relatives an probléme

des isopérimétres, 1850.

P. PANI, Advanced methods in black-hole perturbation theory, International Jour-
nal of Modern Physics A, 28 (2013), p. 1340018.

P. PANI, V. CARDOSO, L. GUALTIERI, E. BERTI, AND A. ISHIBASHI, Perturbations

of slowly rotating black holes: massive vector fields in the kerr metric, Physical
Review D, 86 (2012), p. 104017.

S. PASTON AND A. SEMENOVA, Constraint algebra for regge-teitelboim formulation
of gravity, International Journal of Theoretical Physics, 49 (2010), pp. 2648—
2658.

S. PASTON AND A. SHEYKIN, Embeddings for the schwarzschild metric: classifica-
tion and new results, Classical and Quantum Gravity, 29 (2012), p. 095022.

S. A. PASTON AND V. A. FRANKE, Canonical formulation of the embedded theory of

gravity equivalent to einstein’s general relativity, Theoretical and mathematical
physics, 153 (2007), pp. 1582-1596.

B. PAUL, Removing the ostrogradski ghost from degenerate gravity theories, Physi-
cal Review D, 96 (2017), p. 044035.

M. PAVSIC, Einstein’s gravity from a first order lagrangian in an embedding space,
Physics Letters A, 116 (1986), pp. 1-5.

M. PAVSIC AND M. KAHIL, Path and path deviation equations for p-branes, Open
Physics, 10 (2012), pp. 414-420.

115



BIBLIOGRAPHY

[92] O. C. PiN, Curvature and mechanics, Advances in Mathematics, 15 (1975), pp. 269—
311.

[93] B. PODOLSKY AND P. SCHWED, Review of a generalized electrodynamics, Reviews
of Modern Physics, 20 (1948), p. 40.

[94] J. POLCHINSKI, String theory, Cambridge University Press, 2005.

[95] T. REGGE AND C. TEITELBOIM, General relativity\a la string: a progress report,
arXiv preprint arXiv:1612.05256, (2016).

[96] T. REGGE AND J. A. WHEELER, Stability of a schwarzschild singularity, Physical
Review, 108 (1957), p. 1063.

[97] J. ROSEN, Embedding of various relativistic riemannian spaces in pseudo-

euclidean spaces, Reviews of Modern Physics, 37 (1965), p. 204.

[98] R. SCHOEN AND S.-T. YAU, On the proof of the positive mass conjecture in general
relativity, Communications in Mathematical Physics, 65 (1979), pp. 45-76.

[991 —, Proof of the positive mass theorem. ii, Communications in Mathematical
Physics, 79 (1981), pp. 231-260.

[100] K. SCHWARZSCHILD, Uber das gravitationsfeld eines massenpunktes nach der
einsteinschen theorie, Sitzungsberichte der Koniglich Preullischen Akademie
der Wissenschaften (Berlin, (1916), pp. 189-196.

[101] P. SENJANOVIC, Path integral quantization of field theories with second-class
constraints, Annals of Physics, 100 (1976), pp. 227-261.

[102] J. SIMON, Brane effective actions, kappa-symmetry and applications, Living Re-
views in Relativity, 15 (2012), pp. 1-156.

[103] T. P. SOTIRIOU AND V. FARAONI, f (r) theories of gravity, Reviews of Modern
Physics, 82 (2010), p. 451.

[104] A. J. SPERANZA, Geometrical tools for embedding fields, submanifolds, and folia-
tions, arXiv preprint arXiv:1904.08012, (2019).

[105] M. SZYDL/OWSKI, M. HELLER, AND W. SASIN, Geometry of spaces with the jacobi
metric, Journal of Mathematical Physics, 37 (1996), pp. 346—360.

116



BIBLIOGRAPHY

[106] V. TAPIA, Gravitation a la string, Classical and Quantum Gravity, 6 (1989), p. L49.

[107] A. VILENKIN, Cosmic strings and domain walls, Physics reports, 121 (1985),
pp. 263-315.

[108] A. VILENKIN AND E. P. S. SHELLARD, Cosmic strings and other topological defects,
Cambridge University Press, 1994.

[109] C. VISHVESHWARA, Stability of the schwarzschild metric, Physical Review D, 1
(1970), p. 2870.

[110] R. M. WALD, General relativity, University of Chicago press, 2010.

[111] R. WOODARD, Avoiding dark energy with 1/r modifications of gravity, in The
Invisible Universe: Dark Matter and Dark Energy, Springer, 2007, pp. 403—
433.

[112] R. P. WOODARD, The theorem of ostrogradsky, arXiv preprint arXiv:1506.02210,
(2015).

[113] J. W. YORK, Boundary terms in the action principles of general relativity, Founda-
tions of Physics, 16 (1986), pp. 249-257.

[114] J. W. YORK JR, Role of conformal three-geometry in the dynamics of gravitation,
Physical review letters, 28 (1972), p. 1082.

[115] J. ZINN-JUSTIN, Quantum field theory and critical phenomena, vol. 171, Oxford

university press, 2021.

[116] B. ZWIEBACH, A first course in string theory, Cambridge university press, 2004.

117






	List of Tables
	List of Figures
	Introduction
	Brane Mechanics Geometry
	Notation

	Variation in Brane Mechanics
	Normal variation to m
	Examples of geometric models in brane mechanics 

	Variational Covariant Approach

	Higher-Order Variations
	Linearized Equations of Motion
	Second Covariant Variation and Jacobi Equations
	Third Covariant Variation 
	Flat Background Spacetime
	Curved Background Spacetime

	The Covariant Simultaneous Action

	Variational Analysis of Godetic Brane Gravity
	Regge-Teitelboim model
	Jacobi Equation of RT Model
	Linear stability of Schwarzschild geometry in M6


	Regge-Teitelboim Model as A Singular Second-Order System 
	Ostrogradsky-Hamilton approach to Geodetic Brane Gravity
	Geodetic brane gravity without matter term

	The ADM Lagrangian for geodetic brane gravity
	Ostrogradsky-Hamilton approach
	Hamilton's equations

	First- and second-class constraints
	Algebra of constraints
	Infinitesimal canonical transformations


	Discussion and Conclusions
	Proof for the conservation law (5.20).
	Explicit form of transformation matrix M and effective potential V.
	Mathematica Code
	Integrability conditions
	t embedded in m
	t embedded in M


	Singular second-order systems
	Dirac Method
	First and second class constraints
	Gauge Transformations
	Degrees of Freedom Count
	Dirac Bracket

	Ostrogradsky-Hamilton Approach

	Dictionary of variation and funtional derivatives of constraints
	Variation different geometric objects
	Functional derivatives of the constraints
	 functional derivatives of primary constraints 
	functional derivatives of secondary constraints


	Constraint algebra
	Bibliography

