

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

PROGRAMA DE SISTEMAS AUTÓNOMOS DE NAVEGACIÓN AÉREA Y SUBMARINA

Exoesqueleto para rehabilitar el tobillo

Tesis que presenta Esmeralda Anyuli Alvarez Salcido

Para obtener el grado de **Maestro en Ciencias**

en Sistemas Autónomos de Navegación Aérea y Submarina

> Directores de Tesis: Dr. Jesús Ricardo López Gutiérrez Dr. Sergio Rosario Salazar Cruz

CIUDAD DE MÉXICO

17 de julio de 2023

Dedicatoria

A todas las personas que me dieron la mano cuando lo necesitaba

Agradecimientos

Agradezco a mis padres Octavio y Erendira por ser los pilares fundamentales en todo lo que soy, por creer en mí y apoyarme en cada uno de mis proyectos, además de nunca dejar que me rindiera, a mis hermanas Andrea y Erenalí por ser mis mejores amigas, a mi novio Alejandro por acompañarme en este camino.

Agradezco al Centro de Investigaciones y Estudios Avanzados del Instituto Politécnico Nacional, especialmente a la Unidad Mixta Internacional UMI-LAFMIA permitirme llevar a cabo mis estudios.

Agradezco a el Dr. Jesús Ricardo López Gutiérrez, el Dr. Sergio Rosario Salazar Cruz y a Daniel Centeno, por la guía para el desarrollo del proyecto de la maestría.

Agradezco a todas las personas que me apoyaron a culminar la tesis.

Agradezco al Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) por proporcionarme el apoyo económico.

Resumen

En México se estima que en 2014, el 6.4 % de la población del país reportaron tener al menos una discapacidad y la principal fue la motriz[1]. Una buena forma de abordar esta problemática es mediante el empleo de exoesqueletos para la rehabilitación.

Los exoesqueletos son dispositivos que se encuentran ubicados de forma externa en el cuerpo humano con el propósito de incrementar la fuerza del individuo, restaurar las funciones perdidas, debido a una lesión, cirugía o alguna enfermedad.

Actualmente, las ortesis son de gran utilidad en la rehabilitación de pacientes; la rehabilitación de la marcha es el área más extendida e investigada y se ha aplicado tanto para adultos y niños, obteniendo resultados favorecedores en aspectos como la postura, la velocidad y la fuerza.

Por lo tanto, en esta tesis se presenta el diseño mecánico, el modelado dinámico, la construcción, la instrumentación y el control de un exoesqueleto para rehabilitar el tobillo. El cual se va a implementar en el exoesqueleto para rehabilitación de la marcha que se tiene actualmente en el laboratorio UMI LAFMIA el cual, tiene 6 GDL, 2 para la cadera, 2 para las rodillas y los 2 grados de libertad restantes permiten llevar al paciente sentado a una posición de bipedestación[2]. De este modo poder tener un prototipo que pueda generar una rehabilitación más completa del paciente, con ejercicios que incluyen flexión y extensión de cadera, rodilla y tobillo.

Abstract

In Mexico, it is estimated that in 2014, 6.4% of the country's population reported having at least one disability and the primary type reported was motor disability[1]. Exoskeletons are a good way to deal with this problem.

Exoskeletons are devices placed externally on the human body to enhance the individual's strength, restore lost or weak functions, caused by injury, surgery or disease.

Currently, orthoses play an important role in the rehabilitation of patients; gait rehabilitation is the most widespread and researched area and has been applied to both adults and children, obtaining favourable results in aspects such as posture, speed and strength.

Therefore, this thesis presents the mechanical design, dynamic modelling, construction, instrumentation and control of an exoskeleton to rehabilitate the ankle. This is going to be implemented in the exoskeleton for gait rehabilitation that is currently in the UMI LAFMIA laboratory which, has 6 degrees of freedom (DOF), 2 for the hip, 2 for the knees and the remaining 2 degrees of freedom allowing the patient to be mobilized from a chair and placed in a standing position[2]. So, we can have a prototype that can generate a more complete patient rehabilitation, with exercises that include flexion and extension of the hip, knee and ankle.

Índice general

Re	sume	n	II
Ał	ostrac	t	III
Ín	dice d	e figuras	V
Ín	dice d	e tablas	VII
No	menc	latura	VIII
1.	Intro 1.1.	oducción Estado del Arte	1 . 7
	1.2.	Planteamiento del problema	. 11
	1.3.	Solución propuesta	. 11
	1.4.	Objetivos	. 11
		1.4.1. Objetivo general	. 11
		1.4.2. Objetivos específicos	. 11
	1.5.	Organización de la tesis	. 12
2.	Mar	co teórico	13
	2.1.	Biomecánica del cuerpo humano	. 13
	2.2.	Cinemática del pie	. 14
	2.3.	Cinemática del tobillo	. 15
	2.4.	Antropometría del cuerpo humano	. 17
	2.5.	Masa y centro de masa	. 19
3.	Dise	ño del prototipo y construcción	22
	3.1.	Consideraciones de diseño	. 22
	3.2.	Dimensionamiento del prototipo	. 22
	3.3.	Diseño Mecánico del prototipo	. 25
		3.3.1. Sistema de ajuste para la longitud de la pantorrilla	25
		3.3.2. Soporte para el pie	26
		333 Prototipo completo	29
	3.4	Análisis de esfuerzos	. 31

 3.6. Parámetros del prototipo	 . 37 . 38 41 . 41 . 47 . 47 . 49 . 50
 3.7. Construcción del prototipo 4. Modelado dinámico 4.1. Modelo dinámico 5. Control de movimiento 5.1. Algoritmo de control 5.2. Prueba de estabilidad 5.3. Resultados numéricos 	. 38 41 . 41 . 47 . 47 . 49 50
 4. Modelado dinámico 4.1. Modelo dinámico	41 . 41 47 . 47 . 49
 4.1. Modelo dinámico	. 41 47 . 47 . 49
 5. Control de movimiento 5.1. Algoritmo de control 5.2. Prueba de estabilidad 5.3. Resultados numéricos 	47 . 47 . 49
 5.1. Algoritmo de control	. 47 . 49
 5.2. Prueba de estabilidad	. 49
5.3. Resultados numéricos	50
	. 30
6. Resultados experimentales	55
6.1. Pruebas experimentales	. 55
7. Conclusiones	58
8. Trabajo futuro	59
9. Anexos	60
9.1. Implementación	. 60
Bibliografía	68

Índice de figuras

1.1.	Exoesqueleto potenciador para cargas pesadas
1.2.	Ejemplos de prótesis
1.3.	Exoesqueleto para rehabilitación
1.4.	Usos de los exoesqueletos
1.5.	Porcentaje de uso de los exoesqueletos
1.6.	Exoesqueleto de marcha de la UMI LAFMIA 10
2.1.	Posición anatómica básica 13
2.2.	Ejes y planos del cuerpo humano
2.3.	Distribución del peso en el pie 15
2.4.	Distribución del peso cuando se eleva del suelo el talón
2.5.	Movimientos que existen en el pie
2.6.	Ejemplos de algunas medidas antropométricas
2.7.	Longitud del segmento expresada como fracción de la altura del cuerpo(H) 18
2.8.	Porcentaje de masa de cada segmento 20
2.9.	Ubicación del centro de masa por porcentaje de longitud del segmento 21
3.1.	Dimensiones para el diseño del prototipo
3.2.	Definición de una nueva dimensiones para el diseño del prototipo
3.3.	Subensamble de sistema de ajuste
3.4.	Longitudes de ajuste para el subensamble
3.5.	Subensamble del soporte para el pie
3.6.	Subensamble de soporte para el pie(vista inferior)
3.7.	Longitudes de ajuste para el subensamble del pie 28
3.8.	Prototipo completo
3.9.	Subensamble para el motor y sus componentes
3.10.	Flexión dorsal y flexión plantar en el prototipo
3.11.	Análisis de tensión nodal
3.12.	Factor de seguridad
3.13.	Deformación unitaria
3.14.	Ubicación del centro de masa y el eje de giro del motor
3.15.	Fuerzas presentes en el subensamble del soporte del pie
3.16.	Cálculo de r_p
3.17.	Servomotor seleccionado

3.18.	Creación de operaciones para el código G	38
3.19.	Comparación entre las piezas	38
3.20.	Piezas maquinadas en la CNC	39
3.21.	Ensamble de algunos componentes	39
3.22.	Ensamble de la pierna izquierda del exoesqueleto	39
3.23.	Prototipo terminado	40
4.1.	Diagrama simplificado (tobillo + rodilla)	42
5.1.	Simulación del modelo del robot con el controlador propuesto en Simulink	52
5.2.	Trayectoria de la rodilla	52
5.3.	Trayectoria del tobillo	53
5.4.	Error de seguimiento de la rodilla	53
5.5.	Error de seguimiento del tobillo	54
6.1.	Prueba experimental del seguimiento de trayectoria	56
6.2.	Error de seguimiento	57
9.1.	Controlador MyRIO	60
9.2.	Mapa de conexión - MyRIO	61
9.3.	Puerto de expansión MXP	61
9.4.	Diagrama de conexión entre MyRIO y el motor	64
9.5.	Diagrama de LabVIEW completo	64
9.6.	Diagrama de LabVIEW 1	65
9.7.	Diagrama de LabVIEW 2	65
9.8.	Interfaz de usuario del programa principal	67

Índice de tablas

1.1. 1.2.	Comparación entre los prototipos	8 9
2.1.	Rangos de movimiento para el tobillo	16
2.2.	Longitud estimada y real del segmento	18
2.3.	Masa de diferentes porciones del cuerpo	19
3.1.	Identificación de cada dimensión	24
3.2.	Características de cada persona para las pruebas	24
3.3.	Rango de edades en los que entran los sujetos de prueba	24
3.4.	Identificación y cantidad de unidades de cada pieza	26
3.5.	Identificación y cantidad de unidades de cada pieza para el soporte del pie	28
3.6.	RM, plano de trabajo y sentido de giro de cada movimiento	31
3.7.	Especificaciones del servomotor MX-106T	37
3.8.	Propiedades de las piezas que conforman el prototipo	37
5.1.	Parámetros del exoesqueleto empleados	51
5.2.	Parámetros empleados para el control	51
6.1.	Parámetros empleados	56
6.2.	Ganancias empleadas para el controlador	56
9.1.	Paquete de instrucción	62
9.2.	Tipo de instrucciones empleadas	62
9.3.	Parámetros empleados	62
9.4.	Paquete de estatus	63
9.5.	Paquetes de instrucciones para 2 motores	63
9.6.	Transmitir o Recibir información	66
9.7.	Relación de velocidad	66

Nomenclatura

- Ab/Add Abducción/aducción
- ACV Accidente cerebrovascular
- CM Centro de masa
- F/E Flexión (Flexión dorsal)/Extensión(Flexión plantar)
- FDS Factor de seguridad
- GDL Grados de libertad
- I/E Inversion/eversion
- *P* Control proporcional
- PCD Personas con discapacidad
- PD Control Proporcional derivativo
- PID Control proporcional integral derivativo
- *RM* Rango de movimiento

1 Introducción

A lo largo de la historia, los robots han estado destinados para su uso en entornos industriales para reemplazar a las personas en actividades tediosas y repetitivas, también para tareas que requieren precisión, así como trabajos peligrosos para el operario, pero en la actual se están abriendo nuevos horizontes donde se tiene una mayor interacción con el humano.

Por lo que, surge el concepto de Wearables Robots, que son robots que ayudan a personas a complementar la función de una extremidad o reemplazarla por completo.

Es importante mencionar que la portabilidad no implica necesariamente que el robot es ambulatorio, portátil o autónomo.

Los robots portables también son conocidos como exoesqueletos.

Los robots se pueden clasificar, por la función que desempeñan en cooperación con el humano. Los exoesqueletos potenciadores son robots que extienden la fuerza humana. Las personas a veces se ven obligadas a levantar y mover cargas muy pesadas, a hacer que sus cuerpos adopten posiciones antinaturales o a sufrir intensos choques mecánicos. Los exoesqueletos proporcionan una compensación física para hacer que estas tareas sean menos extenuantes y proporcionar un alivio significativo al operario.

Figura 1.1: Exoesqueleto potenciador para cargas pesadas [3]

Las prótesis son dispositivos que reemplazan una parte del cuerpo que no se encuentra. Esta permite cumplir la función que ese segmento o estructura cumplía anteriormente. Cuando se selecciona la prótesis óptima se requiere analizar varios factores como:

- Peso, edad y altura del paciente
- Estilo de vida y necesidades motoras del paciente
- Zona y nivel de la amputación

(b) Prótesis de pierna

Las ortesis o exoesqueletos para rehabilitación son estructuras mecánicas que corresponden con la anatomía del ser humano, su propósito es restaurar funciones perdidas o débiles, por ejemplo, causadas por una lesión, cirugía o alguna enfermedad.

Las ortesis son de mucha utilidad en la rehabilitación de pacientes con deficiencias motoras, algunos ejemplos de ortesis incluyen miembros superiores, tronco y miembros inferiores que están diseñados para guiar el movimiento, soportar peso, alinear estructuras corporales, proteger articulaciones o corregir deformidades. A diferencia de las prótesis que reemplazan una parte del cuerpo, las ortesis están diseñadas para trabajar en cooperación con el cuerpo intacto, y controlar o ayudar al movimiento[6].

Las ortesis se pueden dividir en:

- Activas: sustituyen una función muscular
- Pasivas: se emplean para mantener alguna parte del cuerpo en determinada posición, cuando no puede mantenerse por sí mismo.

Figura 1.3: Exoesqueleto para rehabilitación [7]

En la actualidad, los exoesqueletos son empleados en diversas áreas:

- Rehabilitación (Sector médico)
- Militar
- Entrenamiento
- Transporte y trabajos pesados (Sector industrial)
- Labores de rescate

En el año 2021, el sector médico fue el que obtuvo el mayor porcentaje de compras de exoesqueletos, con él 52 %. El aumento de lesiones de la médula espinal hace que sean más empleados los exoesqueletos en los centros médicos y de rehabilitación. Se prevé que estos sistemas serán adaptados en todos los ámbitos[8].

Figura 1.5: Porcentaje de uso de los exoesqueletos [8]

Los exoesqueletos, deben ser diseñados considerando la biomecánica del cuerpo humano, es decir, debe existir una correlación entre el número de articulaciones y el robot. Por otra parte, el número de GDL va a cambiar dependiendo de los movimientos que se quieran imitar[9].

Rehabilitación

La rehabilitación es un conjunto de intervenciones que ayudarán a mejorar el funcionamiento y reducir la discapacidad de una persona para interactuar con su entorno.

Para ello, se tratan los síntomas (como el dolor) y se les ayuda en las dificultades que pueda tener para entender, ver, oír, comunicarse, alimentarse o desplazarse.

Cualquier persona puede necesitar ir a rehabilitación en algún momento de su vida, ya sea por una lesión, una cirugía o enfermedad, o porque su capacidad se ha reducido con el paso de los años.

La rehabilitación ayuda a disminuir los efectos de diversos problemas de salud, como enfermedades, lesiones o traumatismos. También, en el caso de cirugías, ayuda a conseguir el mejor resultado posible.

Por otro lado, se puede reducir al mínimo o frenar los efectos de enfermedades crónicas como las enfermedades cardiovasculares, el cáncer y la diabetes.

La rehabilitación brinda una gran cantidad de beneficios tanto para la persona que la requiere como a sus familiares. Ayudar a evitar hospitalizaciones, reducir su duración y evitar los reingresos.[10].

1. INTRODUCCIÓN

La rehabilitación se puede clasificar en:

- Rehabilitación pasiva: no implica movimiento por parte del paciente. Es el fisioterapeuta el que movilizará sus miembros, mientras que el paciente solo colaborará.
- Rehabilitación activa:implican la participación del paciente, que es el que realiza el movimiento.

El tipo de rehabilitación dependerá del padecimiento y el grado de movilidad que pueda tener, siendo la de rehabilitación pasiva el primer paso para llegar a una recuperación y posteriormente continuar a la activa.

El empleo de la robótica en él área de la rehabilitación brinda muchas ventajas

- Los dispositivos robóticos se diseñan para obtener mediciones más exactas, los cuales son empleados por los especialistas para diseñar un tratamiento personalizado.
- Se hace el registro de las métricas en bases de datos.
- Por lo general, disminuyen los tiempos de recuperación.
- Incrementan la motivación. Para algunos pacientes, el trabajar con robots los motiva.
- Facilitan el aprendizaje motor.
- El fisioterapeuta o médico especializado no se encarga de ejecutar manualmente los ejercicios sobre cada paciente.
- A la par que el exoesqueleto rehabilitador está realizando una sesión, el médico puede realizar valoraciones a otros pacientes.
- Adaptación de los dispositivos a las necesidades y características de cada paciente (terapia individualizada)

Por lo tanto, es importante continuar con el avance tecnológico para el apoyo en la rehabilitación. El uso de la robótica para la rehabilitación de la marcha es el área más extendida e investigada, y se ha aplicado tanto a adultos como a niños, obteniendo resultados positivos en aspectos como la independencia, la marcha, la velocidad, la fuerza y la calidad de vida.

1.1. Estado del Arte

Actualmente, existen diversos prototipos propuestos para la rehabilitación del tobillo, como en [11] empleado para la rehabilitación de un esguince de tobillo, mientras que en [12, 13, 14, 15] para la rehabilitación después de un ACV, por otro lado [16] para la asistencia en el pie caído.

Cada prototipo tiene diferente diseño y estructura, y emplean diversos materiales, como en [17] que usa la tecnología de impresión 3D para obtener su modelo, mientras que en [18] ocupan tubos de fibra de carbono.

También el control usado en cada prototipo va desde un PD como en [15], un PID [19] hasta modos deslizantes en [16]. La rehabilitación puede ser llevada a cabo de pie o sentado, según sea el diseño del modelo. También varían en los grados de libertad que puede tener, como en [11, 15, 19, 20, 21] donde se cuenta con el rango completo de movimiento del tobillo, mientras que en [12, 14, 16, 17, 18] con 1 solo GDL y también se tiene el caso con 2 GDL [13].

El tipo de rehabilitación empleada en los diversos prototipos puede ser pasiva o activa, siendo llevada a cabo por una variedad de actuadores, entre los más empleados lineales y rotativos. A continuación se puede ver una tabla comparativa entre los 11 prototipos.

1. INTRODUCCIÓN

Prototipo	Material	Grados de libertad	Tipo de paciente	Tipo de control	Probado en perso- nas
1		F/E, I/E y Ab/Add	Lesión de tobillo	PID	No
2	Aluminio	F/E	ACV	Modos deslizantes	Persona sana
3	Impresión 3D	F/E y I/E	ACV	Control por retro- alimen- tación y control por torque	5 Personas sanas
4		F/E, I/E y Ab/Add	Lesión de tobillo	PID y PD	Persona sana
5	Tubos de fibra de carbono	F/E	Rehabilitación	Р	Persona
6	Aluminio	F/E	ACV y pacientes con problemas de tobillo	PID	Persona sana
7	Impresión 3D	F/E	ACV	Control por retro- alimenta- ción	Persona que sufrió ACV
8		F/E, I/E y Ab/Add	Esguince de tobillo	PI y P	No
9	Aluminio	F/E, I/E y Ab/Add	ACV	PID/PD	No
10		F/E, I/E y Ab/Add	Rehabilitación	Control por ad- mitancia	5 Personas sanas
11		F/E	Asistencia	Modos deslizantes	No

Tabla 1.1:	Comparación entre	los prototipos
------------	-------------------	----------------

1. INTRODUCCIÓN

Prototipo	Tipo de rehabi- litación	Actuadores empleados	Posición del paciente para la rehabilitación	¿Se puede implementar en un exoes- queleto para marcha?
1	Pasiva y activa	Motor con en- coder	Parado / senta- do	Si
2	Pasiva	Actuadores li- neales	Sentado	Si
3	Pasiva	Servomotor	Parado / senta- do	Si
4	Pasiva y activa	Actuadores li- neales y motor a pasos	Sentado	No
5	Pasiva	Brushless mo- tor	Parado / senta- do	Si
6	Pasiva	Actuador lineal	Sentado	Si
7	Pasiva	Motor con en- coder	Parado / senta- do	Si
8	Pasiva	Motor con en- coder	Sentado	No
9	Pasiva	Brushless mo- tor	Sentado	No
10	Pasiva y activa	Actuadores li- neales y servo- motor	Sentado	No
11	Activa	Servomotor	Parado	Si

Tabla 1.2: Comparación entre los prototipos (continuación)

En el laboratorio UMI LAFMIA se desarrolló un exoesqueleto de marcha, que tiene 6 GDL, 2 para la cadera, 2 para las rodillas y los 2 GDL restantes permiten llevar a un paciente que se encuentra sentado a una posición de bipedestación. Es decir, el exoesqueleto se sujeta cuando el paciente se encuentra sentado, y posteriormente lo levanta para realizar las rutinas de marcha.

Figura 1.6: Exoesqueleto de marcha de la UMI LAFMIA [2]

1.2. Planteamiento del problema

Se estima que en México en 2014, el 6.4% de la población del país reportaron tener al menos una discapacidad y la principal fue la motriz (37.32% de las PCD); tener una enfermedad fue la razón principal de dicha discapacidad. [1].

A nivel mundial, en promedio el 15% de la población, tienen algún tipo de discapacidad [22]. Se estima que 2,400 millones de personas tienen alguna condición de salud que se beneficia de la rehabilitación. En algunos países, más del 50% de las personas no reciben los servicios de rehabilitación que requieren, aunado a ello se prevé que la necesidad de rehabilitación debido a los cambios en la salud y las características de la población va a aumentar. Por ejemplo, la esperanza de vida es mayor, pero con más enfermedades crónicas y discapacidad[10].

Actualmente, se cuenta en la UMI LAFMIA con un exoesqueleto para la rehabilitación de la marcha; sin embargo, solo se tienen actuadas las articulaciones de cadera y rodilla, pero para una correcta rehabilitación es necesario añadir control a la articulación del tobillo.

1.3. Solución propuesta

Para ayudar en la rehabilitación de la marcha de la población, se propone desarrollar un prototipo para rehabilitar el tobillo, el cual debe ser de bajo costo, ligero, y que sea fácil de integrar en el exoesqueleto que se tiene en el CINVESTAV para proporcionar un mayor rango de movimiento, a su vez promover una investigación que impulse la mejora del prototipo y que en un futuro se puedan realizar las pruebas necesarias para que el prototipo pueda llegar a los pacientes.

1.4. Objetivos

1.4.1. Objetivo general

Desarrollar un prototipo de exoesqueleto de tobillo para el movimiento de flexión dorsal y flexión plantar para utilizarse como un dispositivo de rehabilitación.

1.4.2. Objetivos específicos

- Estudiar la biomecánica del tobillo y el estado del arte de los dispositivos de rehabilitación para el tobillo.
- Diseñar un prototipo de esqueleto para rehabilitar el tobillo.
- Obtener el modelo dinámico del prototipo diseñado.
- Construir el prototipo considerando las restricciones para este tipo de dispositivos.
- Integrar la articulación desarrollada en el exoesqueleto de marcha de la UMI.
- Implementar un controlador para el exoesqueleto propuesto.

1.5. Organización de la tesis

La tesis está organizada en seis capítulos:

Capítulo 1.- Se aborda una pequeña introducción sobre los exoesqueletos, los antecedentes, el planteamiento del problema, la solución propuesta y los objetivos del proyecto.

Capítulo 2. – En este capítulo se muestran algunos conceptos que serán de utilidad para el desarrollo de la tesis, así como la anatomía del tobillo.

Capítulo 3.— Se presenta el diseño mecánico del exoesqueleto, empleando SolidWorks, se realiza un análisis de esfuerzos para determinar el material a utilizar, la selección del motor adecuado y posteriormente el proceso de construcción del prototipo.

Capítulo 4.– En este capítulo se desarrollan las ecuaciones de movimiento del exoesqueleto considerando 2 GDL, es decir la rodilla y el tobillo, empleando el método de Euler-Lagrange.

Capítulo 5. – Se presenta el desarrollo de la ley de control; así mismo la evaluación numérica.

Capítulo 6.— Se muestran las gráficas de las pruebas experimentales empleando un control PD con compensación de la gravedad, así como los parámetros empleados.

Finalmente, se tiene una sección de anexos donde se aborda la implementación en LabVIEW del control PD con compensación de la gravedad.

2 Marco teórico

En este capítulo se presentan algunos conceptos de la anatomía del pie, así como información que será de utilidad para el desarrollo del proyecto.

2.1. Biomecánica del cuerpo humano

El sistema locomotor está conformado por los huesos, que dan forma al esqueleto, las articulaciones, las cuales se encargan de relacionar los huesos entre sí, y los músculos que se insertan en los huesos y mueven las articulaciones. Entonces, es un sistema que nos aporta forma, estabilidad, movimiento y soporte[23].

Para definir el cuerpo humano e indicar la posición de partes y órganos, se usa el concepto de posición anatómica y planos corporales.

Posición anatómica: es la posición ideal del cuerpo, la cual se define como: el sujeto se encuentra en posición erecta, la cabeza, los ojos y los dedos de los pies van dirigidos hacia adelante, los talones y los dedos de los pies juntos y las extremidades del tronco superiores se encuentran extendidos a ambos lados del cuerpo con las palmas de las manos hacia adelante[24], como se puede ver en la Figura 2.1.

Figura 2.1: Posición anatómica básica [25]

Para describir la anatomía del cuerpo humano se emplean planos imaginarios que pasan a través del cuerpo estando en posición anatómica.

La Figura 2.2 muestra los ejes y planos del cuerpo humano.

Plano sagital: es cualquier plano vertical que pasa a través del cuerpo, es decir, divide al cuerpo en mitad derecha y mitad izquierda. Además, a este plano le corresponde el eje transversal. **Plano frontal**: divide al cuerpo en una porción anterior y una porción posterior.

Plano horizontal o transversal: es el plano horizontal, que divide al cuerpo en una porción superior e inferior [26].

Figura 2.2: Ejes y planos del cuerpo humano
[27]

2.2. Cinemática del pie

El pie está compuesto por 26 huesos donde existen un conjunto de articulaciones que le brindan el movimiento en los 3 planos del espacio. Estos movimientos son de flexión-extensión, rotación interna -rotación externa e inversión - eversión. Las articulaciones se pueden agrupar en 2 grandes grupos:

- 1. Articulaciones de acomodación, su misión es amortiguar el choque del pie con el suelo y acomodarlo a las irregularidades del suelo.
- 2. Articulaciones de movimiento. Su principal función es dinámica y son fundamentales para la marcha.

Por otro lado, es importante mencionar que el peso del cuerpo es transmitido de la pelvis al suelo a través de las extremidades inferiores, es decir, cada pie soporta la mitad del peso del cuerpo.

Al llegar al pie, se distribuyen las fuerzas hacia los diferentes puntos de apoyo. Al analizar las fuerzas en el plano sagital se ha podido comprobar que él 60% se dirigen al hueso del talón y él 40% al antepié, como se muestra en la Figura 2.3. Esto puede cambiar considerablemente cuando se levanta el talón del suelo, lo cual genera que aumente la carga que recibe el antepié, mostrado en la Figura 2.4[28].

Figura 2.4: Distribución del peso cuando se eleva del suelo el talón

2.3. Cinemática del tobillo

El movimiento de flexión y extensión plantar son llevadas a cabo en la articulación del tobillo, sobre el plano sagital. El rango de flexo-extensión promedio es de $57.9^{\circ} - 75.6^{\circ}$, y solo 30° de este rango es necesario para realizar una marcha estable (10° de flexión dorsal y 20° de flexión plantar)[29].

La flexión (flexión dorsal del pie), es cuando se disminuye el ángulo entre los dos segmentos que conforman la articulación(ángulo agudo), mientras que la extensión (flexión plantar del pie), es cuando aumenta el ángulo entre las dos partes de dicha articulación(ángulo obtuso), como se puede ver en la Figura 2.5 [24].

Figura 2.5: Movimientos que existen en el pie [30]

Gracias a trabajos previos, la RM estimada de la articulación del tobillo en cada dirección es dado en la Tabla 2.1. Vale la pena señalar que la RM puede varían considerablemente en cada persona[31].

Tipo de movimiento	Rango de movimiento máximo
Flexión dorsal	$20.3^{\circ} - 29.8^{\circ}$
Flexión plantar	$37.6^{\circ} - 45.8^{\circ}$
Inversión	$14.5^{\circ} - 22^{\circ}$
Eversión	$10^{\circ} - 17^{\circ}$
Abducción	$15.4^{\circ} - 25.9^{\circ}$
Aducción	$22^{\circ} - 36^{\circ}$

 Tabla 2.1: Rangos de movimiento para el tobillo

2.4. Antropometría del cuerpo humano

El término **antropometría** se refiere al estudio de la medición del cuerpo humano.

La palabra antropometría proviene de la palabra griega "antropo", qué significa ser humano, y la palabra griega "metron", que significa medida.

El peso, la estatura, circunferencias (cabeza, cintura, etc.), la longitud de las extremidades, y el anchos (hombro, muñeca, etc.) son algunos ejemplos de medidas antropométricas.

Los estudios antropométricos ayudan a determinar los requerimientos físicos que se deben tomar en cuenta al momento de diseñar equipos, herramientas y espacios de trabajos.

El conocimiento de la diversidad antropométrica de la población es sumamente importante, pues de eso depende el correcto dimensionamiento entre el cuerpo de las personas y los productos o entornos que utilizan.

La falta de adaptación antropométrica es la principal causa de incomodidad, fatiga y lesiones, llegando a tener consecuencias como deformidades óseas durante la etapa de crecimiento y desarrollo de niños.

Las características de las dimensiones de un ser humano son determinadas por la influencia de varios factores[33].

- La herencia genética, según la zona geográfica, la población adaptó diferentes características físicas que les permitieron enfrentar las condiciones de su entorno.
- Sexo, la estructura y forma de los hombres es diferente a la de las mujeres, por ejemplo, la estatura de los hombres, en general, es mayor que la de las mujeres; en cambio, las mujeres tienen una cadera más ancha.
- Edad, a lo largo de la vida las personas van presentando modificaciones en su cuerpo, como el incremento de la estatura.
- Las condiciones socioeconómicas, los hábitos, alimentación, las actividades físicas, el cuidado de la salud, y el cuidado de la higiene, son primordiales en el desarrollo de un individuo [34].

Entonces, el conocimiento de las dimensiones del cuerpo humano son necesarias para el diseño de exoesqueletos, ya que permite establecer las dimensiones apropiadas entre el cuerpo, el sistema y lo que le rodea.

En función de lo que se esté diseñando son las medidas antropométricas que se van a utilizar. En la Figura 2.6 se pueden ver algunas de las medidas antropométricas más empleadas.

Figura 2.6: Ejemplos de algunas medidas antropométricas [35]

La Figura 2.7 representan algunas longitudes de segmentos corporales expresadas como una fracción de la altura (H).

Figura 2.7: Longitud del segmento expresada como fracción de la altura del cuerpo(H) [36]

Sea un sujeto de 166 cm de altura, es decir, H = 166 entonces se puede conocer la longitud de los segmentos, por ejemplo la longitud del piso hasta la rodilla.

Segmento	Longitud estimada[cm]	Longitud real [cm]
Rodilla – piso	0.285H = 47.31	46

Tabla 2.2: Longitud estimada y real del segmento

Se puede ver de la Tabla 2.2 que la diferencia entre el valor real y el estimado es de 1.31 cm,

siendo según el caso una forma fácil para poder obtener diferentes longitudes de los segmentos sin necesidad de realizar las mediciones.

Las medidas antropométricas generalmente se encuentran en tablas, en las cuales, los datos se plasman en percentiles, donde cada uno es el porcentaje de individuos de una población que tienen una dimensión corporal igual o menor a un valor. Por ejemplo, al hablar del P5 (Percentil 5 %), quiere decir que solo el 5 % de la población tienen esa talla o menos. Si se habla del P50, significa que la mitad de la población se encuentra por debajo de dicho valor, cuando se habla del percentil P95, se está diciendo que él 95 % de la población está debajo del valor, es decir, casi toda la población[37].

2.5. Masa y centro de masa

Para expresar la cantidad de materias de un objeto o un cuerpo se utiliza **La masa** la cual es una magnitud escalar.

El Sistema Internacional de Unidades establece que la unidad de la masa es el kilogramo (kg), junto a sus unidades derivadas. De esta forma, el cuerpo humano tiene masa, y cada parte del cuerpo aporta cierto porcentaje de la masa total.

En la Figura 2.8 se puede ver el porcentaje de masa que corresponde a cada porción del cuerpo, con respecto de la masa total del sujeto, es decir, para una mujer cuyo peso es de 60 kg la masa de cada segmento será

Segmento del cuerpo	Masa [kg]
Cabeza y cuello	4.08
Torso	25.56
Brazo	1.5
Antebrazo	0.84
Mano	0.3
Muslo	8.88
Pantorrilla	2.88
Pie	0.78

Tabla 2.3: Masa de diferentes porciones del cuerpo

De la Tabla 2.3, se puede ver que el peso del pie es 0.78 kg, se debe tener en cuenta que los porcentajes mostrados son referentes a un único segmento, es decir, para el caso del pie que tiene un porcentaje de 1.3%, aplica solo para uno, no para ambos, por lo tanto, la masa de los dos miembros es de 1.56 kg.

Figura 2.8: Porcentaje de masa de cada segmento
[38]

El centro de masa simboliza el punto en el que se supone que se concentra toda la masa del sistema para poder hacer su estudio. El centro de masas puede ocupar una posición intermedia entre las posiciones de las diferentes partículas del sistema. No obstante, es posible que el centro de masas esté fuera del sólido.

Entonces, dado que el cuerpo humano tiene masa, para analizar la cinemática y dinámica, es necesario emplear los centros de masa, ya sea del cuerpo como un todo o partes específicas de él.

En la Figura 2.9 se puede ver con un punto negro la ubicación del CM con respecto al porcentaje de longitud del segmento en cuestión, por ejemplo para la pantorrilla el centro de masa se ubica al 43% de la longitud total de la pierna que con respeto a la articulación de la rodilla se encuentra por debajo.

Figura 2.9: Ubicación del centro de masa por porcentaje de longitud del segmento [39]

Diseño del prototipo y construcción

3

En este capítulo se aborda el diseño del prototipo, el cual comprende: el dimensionamiento del mismo, el diseño asistido por computadora; así como la selección de los materiales. El objetivo es diseñar un exoesqueleto para la rehabilitación del tobillo, con los movimientos de flexión dorsal y plantar. Este prototipo debe tener una estructura ligera y resistente que genere la correcta sujeción a la pantorrilla y pie, y que pueda adaptarse a un rango de pacientes con diferentes estaturas y longitud del pie.

3.1. Consideraciones de diseño

El exoesqueleto para rehabilitación de tobillo fue diseñado con los siguientes requerimientos:

- Ajustarse a las dimensiones de la población objetivo.
- Realizar ejercicios de rehabilitación pasiva.
- Diseño antropomórfico.
- Estructura ligera y resistente.
- Estructura compacta.
- Para evitar la hiperextensión de las articulaciones se deben añadir topes mecánicos.

3.2. Dimensionamiento del prototipo

Cuando se va a diseñar un producto, se debe definir para que tipo de población va dirigido, de modo que se pueda establecer las dimensiones apropiadas, para nuestro caso la estatura del individuo juega un papel importante. La forma errónea de solucionar este problema, consiste, es la selección del promedio de las dimensiones, sin embargo, si se diseña una puerta para la altura promedio, entonces, 50% de la población se golpeará la cabeza, por lo tanto, una mejor forma de solucionar dicho problema es diseñar para un extremo u otro. Por ejemplo, las puertas son creadas para las personas altas (P95 o P100) más una tolerancia para asegurar casos extremos. Sin embargo, no siempre es posible realizar el diseño para que cumpla con el percentil más alto, ya que en nuestro caso no sería funcional, una mejor aproximación es hacer el prototipo ajustable.

Para el rehabilitador de tobillo nos interesan las dimensiones mostradas en la Figura 3.1, de ahí

se va a generar una nueva dimensión como en la Figura 3.2

Figura 3.1: Dimensiones para el diseño del prototipo [34]

Figura 3.2: Definición de una nueva dimensiones para el diseño del prototipo

donde

$$d_6 = d_3 - d_2 \tag{3.1}$$

El nombre de cada dimensión se puede ver en la Tabla 3.1

3. DISEÑO DEL PROTOTIPO Y CONSTRUCCIÓN

Dimensión	Identificación
Estatura	d_1
Altura tobillo	d_2
Altura rodilla	d_3
Longitud del pie	d_4
Ancho del pie	d_5
Longitud de tobillo a rodilla	d_6

Tabla 3.1: Identificación de cada dimensión

Inicialmente, el prototipo será probado por 2 personas sanas, cuyas características se pueden ver en la Tabla 3.2.

Dimensión	Persona 1	Persona 2
d_1	160 cm	165 cm
d_3	44 cm	46 cm
d_4	24.8 cm	25.4 cm

Tabla 3.2: Características de cada persona para las pruebas

	18 años				19 - 24 años			
Dimensiones	Х	P5	P50	P95	Х	P5	P50	P95
d_1 – Estatura	1572	1478	1574	1666	1586	1485	1586	1690
d_2 – Altura tobillo	64	51	62	77	63	50	63	76
d_3 –Altura rodilla	445	400	445	490	444	398	441	490
d_4 – Longitud del pie	233	218	233	248	235	217	235	255
d_5 – Ancho del pie	89	82	90	96	89	81	88	97

X=Promedio de los valores, P5=Percentil 5, P50=Percentil 50, P95=Percentil 95, medidas en mm

Tabla 3.3: Rango de edades en los que entran los sujetos de prueba[34]

Para darle un mayor rango de operación se propone que a las dimensiones, se les añada una tolerancia de 2 cm hacia arriba y 6 cm hacia abajo, entonces, se tendrá un rango de trabajo para la dimensión d_3 de 40 a 48 cm. La tolerancia inferior es mayor con el objetivo de qué personas con una edad menor también puedan utilizar el rehabilitador.
3.3. Diseño Mecánico del prototipo

El diseño consiste en dos partes: el sistema de ajuste para la longitud de la pantorrilla y el soporte para el pie. Los ejercicios de rehabilitación son realizados a través de una serie de eslabones unidos por articulaciones que corresponden a la rodilla y el tobillo. Para definir las dimensiones de estos eslabones, se utilizaron las medidas expuestas en la sección 3.2.

3.3.1. Sistema de ajuste para la longitud de la pantorrilla

El subensamble del sistema de ajuste de longitud de la pantorrilla, mostradas en la Figura 3.3, fue diseñado para un fácil ajuste a la pantorrilla del paciente.

La Figura 3.4 en el lado izquierdo, muestra el ajuste mínimo que corresponde a una dimensión $d_3 = 40cm$, mientras que en el derecho el máximo ajuste para la longitud de la pantorrilla, la cual equivale a $d_3 = 48cm$. Este subensamble consta de las piezas mostradas en la Tabla

Figura 3.3: Subensamble de sistema de ajuste

3.4, siendo un total de 12.

(a) Longitud mínima (b) Longitud máxima

Figura 3.4: Longitudes de ajuste para el subensamble

Pieza	Color	Cantidad
Pieza 1	Gris	1
Pieza 2	Amarillo	2
Pieza 3	Rojo	1
Pieza 4	Verde	2
Pieza 5	Azul	4
Pieza 6	Lila	2

Tabla 3.4: Identificación y cantidad de unidades de cada pieza

3.3.2. Soporte para el pie

El subensamble del soporte para el pie, mostradas en la Figura 3.5, fue diseñado para permitir un fácil ajuste a la longitud del pie del paciente. La Figura 3.6 contiene la vista inferior del subensamble con el objetivo de poder visualizar todos los componentes.

Como se mencionó en la sección anterior, se propone un rehabilitador ajustable, por lo tanto, la Figura 3.7 en el lado izquierdo, muestra el ajuste mínimo para la longitud del pie, siendo $d_4 = 17cm$, mientras que en el derecho, el máximo ajuste, $d_4 = 27cm$.

El subensamble del soporte del pie consta de las partes mostradas en la Tabla 3.5, siendo un total de 20 piezas.

Figura 3.5: Subensamble del soporte para el pie

Figura 3.6: Subensamble de soporte para el pie(vista inferior)

(a) Longitud mínima de ajuste del pie

(b) Longitud máxima de ajuste del pie

Figura 3.7: Longitudes de ajuste para el subensamble del pie

Pieza	Color	Cantidad
Pieza 7	Naranja	1
Pieza 8	Azul cielo	2
Pieza 9	Verde limón	2
Pieza 10	Negro	2
Pieza 11	Rosa	2
Pieza 12	Morado	1
Pieza 13	Café	6
Pieza 14	Gris oscuro	4

Tabla 3.5: Identificación y cantidad de unidades de cada pieza para el soporte del pie

3.3.3. Prototipo completo

El prototipo completo está formado por dos subensambles. La Figura 3.8, contiene el prototipo completo, se pueden ver componentes nuevos, los cuales son mostrados en la Figura 3.9, conformado por 2 piezas, el motor y el soporte del motor que lo mantiene fijo. Finalmente, todo el prototipo, cuenta con un total de 36 piezas sin contar tornillos, rondanas y tuercas.

Figura 3.8: Prototipo completo

Figura 3.9: Subensamble para el motor y sus componentes

La Figura 3.10 (a) muestra la flexión dorsal, la Figura 3.10 (b) es la posición normal en la que se encuentra el pie, mientras que Figura 3.10 (c) es la flexión plantar.

Figura 3.10: Flexión dorsal y flexión plantar en el prototipo

La Tabla 3.6 muestra el RM para la flexión dorsal y plantar propuestos para este prototipo, cumpliendo con el promedio mostrado en la Tabla 2.1,también se añade el plano de trabajo sobre el cual realiza el giro, así como el sentido de giro en el cual se lleva a cabo.

	Flexión dorsal	Flexión plantar
RM	$0^{\circ} - 25^{\circ}$	$0^{\circ} - 40^{\circ}$
Plano de trabajo	Sagital	Sagital
Giro en sentido	Horario	Antihorario

Tabla 3.6: RM, plano de trabajo y sentido de giro de cada movimiento

Es muy importante mencionar que para la seguridad del paciente se añadieron topes mecánicos, para que en caso de fallos no se supere el rango máximo de movimiento permitido, las piezas que se encargan de esto son las mostradas en la Figura 3.5 en color naranja y rosa.

3.4. Análisis de esfuerzos

Se realizó un análisis de esfuerzos de la estructura para determinar el material y las dimensiones a utilizar para cada pieza; se busca que el prototipo sea ligero y que cuente con los requerimientos de seguridad establecidos anteriormente. Este análisis se llevó a cabo en el programa SolidWorks mediante su herramienta de elemento finito. Para la elección de los materiales se consideraron aspectos como disponibilidad del material, resistencia mecánica y peso. Luego de varias pruebas se seleccionó como material una aleación de aluminio 6061, usando soleras de diversos espesores, entre los cuales se encuentran 6.4mm(1/4") y 12.7mm(1/2"). En la Figura 3.11 se observa el análisis de tensión nodal, se considera el peso propio de la estructura, para ello se debe añadir la gravedad (flecha en color rojo), también se añade el peso de los motores y se supone que la estructura carga un peso de 200 N (flechas en color morado), distribuidos según la Figura 2.3. Se debe poner una sujeción de tipo fija en la pieza 4 (flechas en color verde).

En la Figura 3.12 se puede ver el factor de seguridad mínimo con un valor 1.5.

El factor de seguridad es el cociente entre el valor de la capacidad máxima de un sistema y el valor al cual se verá sometido. Por tal motivo, este debe ser un número mayor que uno, que indique la capacidad en exceso que tiene el sistema por sobre sus requerimientos.

La Figura 3.13 muestra la deformación unitaria, donde se pueden observar los puntos de máxima deformación dentro de la estructura.

3. DISEÑO DEL PROTOTIPO Y CONSTRUCCIÓN

Figura 3.11: Análisis de tensión nodal

Figura 3.12: Factor de seguridad

3. DISEÑO DEL PROTOTIPO Y CONSTRUCCIÓN

Figura 3.13: Deformación unitaria

3.5. Selección del motor

Para seleccionar el actuador es necesario conocer el torque máximo que este debe brindar, por lo tanto, se establecieron las siguientes condiciones:

- El eje del actuador se encuentra alineado al eje del tobillo.
- El portador no ejerce fuerza muscular.
- Se considera una persona de 68 kg
- El subensamble del pie tiene una masa de 0.79 kg
- La longitud del pie es de 27 cm

Es decir:

- $m_{persona} = 68 \text{kg}$
- $m_e = 0.79 \text{kg}$
- $L_{max} = 0.27 \mathrm{m}$

Recordando que el peso del pie equivale a $1.3\,\%$ de la masa total de la persona.

$$m_p = 0.013(68kg) = 0.88kg$$

El centro de masa de todo el subensamble del soporte del pie, para así poder conocer las distancias hasta el eje de giro del motor, el CM se ubica en:

$$r_x = 0.045m$$

 $r_y = -0.078m$ (3.2)
 $r_z = 0.046m$

Es importante mencionar que el centro de masa se calcula a partir de un sistema de coordenadas definido sobre el eje de rotación del motor, como en la Figura 3.14.

Figura 3.14: Ubicación del centro de masa y el eje de giro del motor

Las fuerzas presentes y los brazos de palanca respectivos se encuentran en la Figura 3.15.

Figura 3.15: Fuerzas presentes en el subensamble del soporte del pie

donde:

- W_e = Peso del subensamble del pie
- $W_p = \text{Peso del pie}$
- W_m = Peso del motor
- $r_e =$ Brazo de palanca desde el eje de giro del motor hasta W_e
- $r_p =$ Brazo de palanca desde el eje de giro del motor hasta W_p

El valor del brazo de palanca para la fuerza W_e se puede conocer directamente

$$r_e = r_z = 0.046m \tag{3.3}$$

Para conocer el brazo de palanca de W_p se usará la Figura 3.16

Figura 3.16: Cálculo de r_p

dado que se conocen $L_{max} = 0.27m$ es posible conocer $\frac{L_{max}}{2} = 0.135m$ y, por lo tanto, el valor de *a*

$$a = \frac{L_{max}}{2} - 0.077m = 0.135m - 0.077m = 0.058m$$
(3.4)

Posteriormente obtener α

$$\alpha = \tan^{-1} \left(\frac{a}{0.112m} \right) = 27.37^{\circ} \tag{3.5}$$

conociendo el valor de α se puede calcular el valor de e

$$e = \frac{a}{\sin \alpha} = 0.126m \tag{3.6}$$

Se sabe que $30^{\circ} + \alpha + \beta = 90^{\circ}$, por lo tanto,

$$\alpha + \beta = 60^{\circ} \tag{3.7}$$

entonces

$$\beta = 60^{\circ} - \alpha = 32.63^{\circ} \tag{3.8}$$

Finalmente, se puede obtener el brazo de palanca de W_p

$$r_p = e\cos\beta = 0.106m\tag{3.9}$$

Para poder conocer el torque necesario del motor (τ_m) se emplea la ecuación 3.10

$$\sum \tau = \tau_m + \tau_e + \tau_p = 0 \tag{3.10}$$

donde:

- El signo del torque calculado será negativo en sentido horario
- $\tau = brazo * fuerza$

Por lo tanto,

$$\sum \tau = \tau_m - W_e(r_e) - W_p(r_p)$$

$$\sum \tau = \tau_m - 7.75N(0.046m) - 8.7N(0.106m)$$

$$\sum \tau = \tau_m - 0.36Nm - 0.92Nm$$

$$\sum \tau = \tau_m - 1.3Nm = 0$$

$$\tau_m - 1.3Nm = 0$$

$$\tau_m = 1.3Nm \qquad (3.11)$$

Considerando los cálculos anteriores, se va a seleccionar un motor que sea capaz de suministrar un torque que sea mayor al obtenido en la ecuación 3.11, para evitar que el motor opere en su zona de saturación.

El servomotor seleccionado es DYNAMIXEL MX-106T, mostrado en la Figura 3.17

Figura 3.17: Servomotor seleccionado [40]

y en la Tabla 3.7 se enumeran las especificaciones técnicas del servomotor [40].

3. DISEÑO DEL PROTOTIPO Y CONSTRUCCIÓN

Característica	Valor	
Masa	153[g]	
Dimensiones	40.2 x 65.1 x 46[mm]	
Modo de operación	Modo rueda (Giro sin fin)	
	Modo articulación ($0^{\circ} \sim 360^{\circ}$)	
	Modo multivuelta	
Reducción	225:1	
Torque	5.4[N.m]	
Velocidad	41[rev/min](a11.1[V])	
	45[rev/min](a12[V])	
	55[rev/min](a14.8[V])	
Voltaje de entrada	$10.0 \sim 14.8[V]$	
Backlash (holgura)	0.33°	

Tabla 3.7: Especificaciones de	l servomotor MX-106T
--------------------------------	----------------------

3.6. Parámetros del prototipo

La masa del prototipo se puede estimar empleando el modelo CAD y asignando el tipo de material con el que se fabricará cada pieza. En la Tabla 3.8 se presenta la masa aproximada de cada pieza, el material con que fueron fabricados y el color de identificación de cada parte.

Pieza	Color	Material	Masa [gramos]
Pieza 1	Gris	Aleación de aluminio 6061	95.65
Pieza 2	Amarillo	Aleación de aluminio 6061	78.33
Pieza 3	Rojo	Aleación de aluminio 6061	95.65
Pieza 4	Verde	Aleación de aluminio 6061	29.18
Pieza 5	Azul	PLA (Impresión 3D)	13.6
Pieza 6	Lila	PLA (Impresión 3D)	11
Pieza 7	Naranja	Aleación de aluminio 6061	312
Pieza 8	Azul cielo	Aleación de aluminio 6061	16.33
Pieza 9	Verde limón	Aleación de aluminio 6061	239
Pieza 10	Negro	Aleación de aluminio 6061	61.62
Pieza 11	Rosa	Aleación de aluminio 6061	92.33
Pieza 12	Morado	Aleación de aluminio 6061	312
Pieza 13	Café	Acero galvanizado	10.35
Pieza 14	Gris oscuro	Acero galvanizado	19
Pieza 15	Gris claro	PLA (Impresión 3D)	70
Motor			153

Tabla 3.8: Propiedades de las piezas que conforman el prototipo

3.7. Construcción del prototipo

El maquinado y la construcción del rehabilitador de tobillo se realizó en el laboratorio de Prototipado Rápido del laboratorio UMI-LAFMIA del CINVESTAV. Se usaron todas las herramientas disponibles en dicho laboratorio, incluido una máquina fresadora por control numérico computarizado (CNC) Haas Mini Mill.

Los códigos G se generaron en Solidworks utilizando el toolbox Solidcam. En la Figura 3.18 se puede observar el ambiente de Solidcam para la generación del código G de una de las piezas que conforman el prototipo, en (a) se puede ver la pieza original, en (b) se muestra una operación de desbaste y finalmente en (c) una operación de contorneado.

Figura 3.18: Creación de operaciones para el código G

En la Figura 3.19 del lado izquierdo se puede ver una pieza después de salir del maquinado en la CNC, dicha pieza contiene rebaba, en el lado derecho, se muestra la misma pieza luego de darle un acabado con una lima.

Figura 3.19: Comparación entre las piezas

En la Figura 3.20 se puede ver alunas de las piezas, que fueron maquinadas en aluminio, para la construcción del prototipo, cuyo diseño se presentó previamente.

Ciertas piezas son de PLC, para ello se empleó una impresora 3D.

La Figura 3.21 muestra el subensamble que permite hacer el ajuste de la longitud de la tibia del

3. DISEÑO DEL PROTOTIPO Y CONSTRUCCIÓN

Figura 3.20: Piezas maquinadas en la CNC

paciente mientras que la Figura 3.22 muestra el ensamble del prototipo para la pierna izquierda

Figura 3.21: Ensamble de algunos componentes

debidamente colocada en el exoesqueleto de marcha.

Finalmente, en la Figura 3.23 se observa el prototipo ya terminado.

Figura 3.22: Ensamble de la pierna izquierda del exoesqueleto

Figura 3.23: Prototipo terminado

4 Modelado dinámico

El estudio de la cinemática y dinámica del prototipo proporciona información de los fenómenos físicos involucrados en el sistema; además, es necesario para el análisis, diseño y simulación de algoritmos de control. En este capítulo se obtiene el modelo dinámico del exoesqueleto considerando las articulaciones de la rodilla y el tobillo, mediante el formalismo de Euler-Lagrange[41].

4.1. Modelo dinámico

Las ecuaciones dinámicas que rigen el comportamiento del robot se pueden obtener mediante el diagrama simplificado de los eslabones del exoesqueleto, el cual se presenta en la Figura 4.1, donde se pueden observar los dos eslabones que conforman el prototipo, y existirá un centro de masa para cada uno, los puntos de rotación(marcados en color rojo) son las articulaciones y también se pueden observar los nombres que se han asignado a cada variable.

Figura 4.1: Diagrama simplificado (tobillo + rodilla)

Las distancias entre el eje de giro y el centro de masas del eslabón 1 y del eslabón 2 se denotan por l_{c1} y l_{c2} , mientras que I_1 e I_2 expresan el momento de inercia del eslabón con respecto al eje que pasa a través de sus centros de masas. Las dos articulaciones son rotacionales. El grado de libertad asociado al ángulo q_1 se mide desde el eje longitudinal del muslo(línea punteada en azul) hasta el eslabón 1, siendo positivo en sentido antihorario, mientras que q_2 se mide desde la extensión del eje longitudinal que pasa por el eslabón 1 hasta el eslabón 2. El vector de posiciones articulares q(t) es:

$$q(t) = \begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix}$$
(4.1)

El formalismo de Euler-Lagrange, que se utilizó para la obtención del modelo dinámico, se define como:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_i} \right] - \frac{\partial L}{\partial q_i} = \tau_i \qquad i = 1, 2 \tag{4.2}$$

donde

$$L(q, \dot{q}) = K(q, \dot{q}) - U(q)$$

$$K(q, \dot{q}) = \frac{1}{2}m ||v||^{2} + \frac{1}{2}I\dot{q}^{2}$$

$$U(q) = mgh$$
(4.3)

donde:

- $L(q, \dot{q})$ es el Lagrangiano
- $K(q, \dot{q})$ la energía cinética
- U(q) la energía potencial
- *m* es la masa
- g gravedad
- v la velocidad lineal
- \dot{q} velocidad angular
- *h* altura del origen hasta el centro de masa

Las coordenadas del CM del eslabón 1, expresadas en el plano sagital

$$X_1 = \begin{bmatrix} x_{c1} \\ y_{c1} \end{bmatrix} = \begin{bmatrix} l_{c1}\sin(q_1) \\ -l_{c1}\cos(q_1) \end{bmatrix}$$
(4.4)

Obteniendo la derivando del vector de coordenadas, se obtiene el vector de velocidad del eslabón como sigue:

$$V_{1} = \begin{bmatrix} \dot{x}_{c1} \\ \dot{y}_{c1} \end{bmatrix} = \begin{bmatrix} l_{c1} \cos(q_{1}) \dot{q}_{1} \\ l_{c1} \sin(q_{1}) \dot{q}_{1} \end{bmatrix}$$
(4.5)

La velocidad al cuadrado del CM del eslabón 1 se obtiene mediante la multiplicación matricial: $V_1^2 = V_1^T V_1$

$$V_1^T V_1 = \begin{bmatrix} l_{c1} \cos(q_1) \dot{q}_1 & l_{c1} \sin(q_1) \dot{q}_1 \end{bmatrix} \begin{bmatrix} l_{c1} \cos(q_1) \dot{q}_1 \\ l_{c1} \sin(q_1) \dot{q}_1 \end{bmatrix}$$

$$V_1^T V_1 = l_{c1}^2 \cos^2(q_1) \dot{q}_1^2 + l_{c1}^2 \sin^2(q_1) \dot{q}_1^2$$

$$V_1^T V_1 = l_{c1}^2 (\cos^2(q_1) + \sin^2(q_1)) \dot{q}_1^2$$
(4.6)

utilizando la identidad trigonométrica:

$$\cos^2(\beta) + \sin^2(\beta) = 1 \tag{4.7}$$

Se tiene

$$V_1^T V_1 = l_{c1}^2 \dot{q}_1^2 \tag{4.8}$$

La energía cinética asociada a la masa del exoesqueleto está determinada por:

$$K_1 = \frac{1}{2}m_1 l_{c1}^2 \dot{q}_1^2 + \frac{1}{2}I_1 \dot{q}_1^2 \tag{4.9}$$

Por otro lado, la energía potencial de la articulación de la rodilla es

$$U_1 = -m_1 g l_{c1} \cos(q_1) \tag{4.10}$$

Para el eslabón 2 obtener las coordenadas del centro de masa

$$X_{2} = \begin{bmatrix} x_{c2} \\ y_{c2} \end{bmatrix} = \begin{bmatrix} l_{1}\sin(q_{1}) + l_{c2}\sin(q_{1} + q_{2} + \alpha) \\ -l_{1}\cos(q_{1}) - l_{c2}\cos(q_{1} + q_{2} + \alpha) \end{bmatrix}$$
(4.11)

La velocidad lineal

$$V_{2} = \begin{bmatrix} \dot{x}_{c2} \\ \dot{y}_{c2} \end{bmatrix} = \begin{bmatrix} l_{1}\cos(q_{1})\dot{q}_{1} + l_{c2}\cos(q_{1} + q_{2} + \alpha)(\dot{q}_{1} + \dot{q}_{2}) \\ l_{1}\sin(q_{1})\dot{q}_{1} + l_{c2}\sin(q_{1} + q_{2} + \alpha)(\dot{q}_{1} + \dot{q}_{2}) \end{bmatrix}$$
(4.12)

La velocidad al cuadrado para el segundo eslabón

$$r = q_{1} + q_{2} + \alpha$$

$$V_{2}^{2} = \begin{bmatrix} l_{1} \cos(q_{1})\dot{q}_{1} + l_{c2} \cos(r)(\dot{q}_{1} + \dot{q}_{2}) \\ l_{1} \sin(q_{1})\dot{q}_{1} + l_{c2} \sin(r)(\dot{q}_{1} + \dot{q}_{2}) \end{bmatrix}^{T} \begin{bmatrix} l_{1} \cos(q_{1})\dot{q}_{1} + l_{c2} \cos(r)(\dot{q}_{1} + \dot{q}_{2}) \\ l_{1} \sin(q_{1})\dot{q}_{1} + l_{c2} \sin(r)(\dot{q}_{1} + \dot{q}_{2}) \end{bmatrix}^{T} = l_{1}^{2}\dot{q}_{1}^{2} + l_{c2}^{2}(\dot{q}_{1} + \dot{q}_{1})^{2} + 2l_{1}l_{c2} \cos(q_{1}) \cos(q_{1} + q_{2} + \alpha)\dot{q}_{1}(\dot{q}_{1} + \dot{q}_{2}) \cdots$$

$$+ 2l_{1}l_{c2} \sin(q_{1}) \sin(q_{1} + q_{2} + \alpha)\dot{q}_{1}(\dot{q}_{1} + \dot{q}_{2})$$

$$(4.14)$$

Empleando

$$\sin(a)\sin(a+b) + \cos(a)\cos(a+b) = \cos(b)$$

$$a = q_1 \quad y \quad b = q_2 + \alpha$$
(4.15)

se obtiene

$$= l_1^2 \dot{q}_1^2 + l_{c2}^2 (\dot{q}_1 + \dot{q}_2)^2 + 2l_1 l_{c2} \dot{q}_1 (\dot{q}_1 + \dot{q}_2) (\cos(q_1) \cos(q_1 + q_2 + \alpha))...$$

+ $\sin(q_1) \sin(q_1 + q_2 + \alpha))$
= $l_1^2 \dot{q}_1^2 + l_{c2}^2 (\dot{q}_1 + \dot{q}_2)^2 + 2l_1 l_{c2} \dot{q}_1 (\dot{q}_1 + \dot{q}_2) \cos(q_2 + \alpha)$ (4.16)
(4.17)

La energía cinética para el eslabón 2

$$K_{2} = \frac{1}{2}m_{2}l_{1}^{2}\dot{q}_{1}^{2} + \frac{1}{2}m_{2}l_{c2}^{2}(\dot{q}_{1}^{2} + 2\dot{q}_{1}\dot{q}_{1} + \dot{q}_{2}^{2}) + m_{2}l_{1}l_{c2}\cos(q_{2} + \alpha)(\dot{q}_{1}^{2} + \dot{q}_{1}\dot{q}_{2})\dots$$
(4.18)

$$+\frac{1}{2}I_2(\dot{q}_1+\dot{q}_2)^2\tag{4.19}$$

Por otro lado, la energía potencial de la articulación del tobillo es

$$U_{2} = m_{2}g(-l_{1}\cos(q_{1}) - l_{c2}\cos(q_{1} + q_{2} + \alpha))$$

= $-m_{2}gl_{1}\cos(q_{1}) - m_{2}gl_{c2}\cos(q_{1} + q_{2} + \alpha)$ (4.20)

La energía cinética total es:

$$K = K_{1} + K_{2}$$

$$K = \frac{1}{2}m_{1}l_{c1}^{2}\dot{q}_{1}^{2} + \frac{1}{2}I_{1}\dot{q}_{1}^{2} + \frac{1}{2}m_{2}l_{1}^{2}\dot{q}_{1}^{2} + \frac{1}{2}m_{2}l_{c2}^{2}(\dot{q}_{1}^{2} + 2\dot{q}_{1}\dot{q}_{1} + \dot{q}_{2}^{2})$$

$$+ m_{2}l_{1}l_{c2}\cos(q_{2} + \alpha)(\dot{q}_{1}^{2} + \dot{q}_{1}\dot{q}_{2}) + \frac{1}{2}I_{2}(\dot{q}_{1} + \dot{q}_{2})^{2}$$
(4.21)

La energía potencial total es

$$U = U_1 + U_2$$

= $-m_1 l_{c1} g \cos(q_1) - m_2 l_1 g \cos(q_1) - m_2 l_{c2} g \cos(q_1 + q_2 + \alpha)$ (4.22)

El lagrangiano, a partir de las energías cinéticas y potencial, es

$$L(q, \dot{q}) = K - U$$

$$= \frac{1}{2}m_1 l_{c1}^2 \dot{q}_1^2 + \frac{1}{2}I_1 \dot{q}_1^2 + \frac{1}{2}m_2 l_1^2 \dot{q}_1^2 + \frac{1}{2}m_2 l_{c2}^2 (\dot{q}_1^2 + 2\dot{q}_1 \dot{q}_2 + \dot{q}_2^2)$$

$$+ m_2 l_1 l_{c2} \cos(q_2 + \alpha) (\dot{q}_1^2 + \dot{q}_1 \dot{q}_2) + \frac{1}{2}I_2 (\dot{q}_1^2 + 2\dot{q}_1 \dot{q}_2 + \dot{q}_2^2)$$

$$+ m_1 l_{c1} g \cos(q_1) + m_2 l_1 g \cos(q_1) + m_2 l_{c2} g \cos(q_1 + q_2 + \alpha)$$
(4.23)

Las ecuaciones de movimiento del sistema de la Figura 4.1 quedan dadas por:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_1} \right] - \frac{\partial L}{\partial q_1} = \tau_1 \tag{4.24}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_2} \right] - \frac{\partial L}{\partial q_2} = \tau_2 \tag{4.25}$$

se obtienen las siguientes derivadas,

$$\frac{\partial L}{\partial \dot{q}_1} = (m_1 l_{c1}^2 + I_1 + m_2 l_1^2 + m_2 l_{c2}^2 + I_2 + 2m_2 l_1 l_{c2} \cos(q_2 + \alpha)) \dot{q}_1 + (m_2 l_{c2}^2 + I_2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha)) \dot{q}_2$$
(4.26)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_1} \right] = (m_1 l_{c1}^2 + I_1 + m_2 l_1^2 + m_2 l_{c2}^2 + I_2) \ddot{q}_1 + (m_2 l_{c2}^2 + I_2) \ddot{q}_2 - 2m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_1 \dot{q}_2 - m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_2^2 + 2m_2 l_1 l_{c2} \cos(q_2 + \alpha) \ddot{q}_1 + m_2 l_1 l_{c2} \cos(q_2 + \alpha) \ddot{q}_2$$

$$(4.27)$$

$$\frac{\partial L}{\partial q_1} = -m_1 l_{c1} g \sin(q_1) - m_2 l_1 g \sin(q_1) - m_2 l_{c2} g \sin(q_1 + q_2 + \alpha)$$
(4.28)

$$\frac{\partial L}{\partial \dot{q}_2} = (m_2 l_{c2}^2 + I_2) \dot{q}_1 + (m_2 l_{c2}^2 + I_2) \dot{q}_2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha) \dot{q}_1 \tag{4.29}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial L}{\partial \dot{q}_2} \right] = (m_2 l_{c2}^2 + I_2) \ddot{q}_1 + (m_2 l_{c2}^2 + I_2) \ddot{q}_2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha) \ddot{q}_1 - m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_1 \dot{q}_2$$
(4.30)

$$\frac{\partial L}{\partial q_2} = -m_2 l_1 l_{c2} \sin(q_2 + \alpha) (\dot{q}_1^2 + \dot{q}_1 \dot{q}_2) - m_2 l_{c2} g \sin(q_1 + q_2 + \alpha)$$
(4.31)

Las ecuaciones dinámicas que modelan el rehabilitador de tobillo son:

$$(m_1 l_{c1}^2 + I_1 + m_2 l_1^2 + m_2 l_{c2}^2 + I_2 + 2m_2 l_1 l_{c2} \cos(q_2 + \alpha)) \ddot{q}_1 + (m_2 l_{c2}^2 + I_2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha)) \ddot{q}_2 - 2m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_1 \dot{q}_2 - m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_2^2 + m_1 l_{c1} g \sin(q_1) + m_2 l_1 g \sin(q_1) + m_2 l_{c2} g \sin(q_1 + q_2 + \alpha) = \tau_1$$

$$(4.32)$$

$$(m_2 l_{c2}^2 + I_2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha))\ddot{q}_1 + (m_2 l_{c2}^2 + I_2)\ddot{q}_2 + m_2 l_1 l_{c2} \sin(q_2 + \alpha)\dot{q}_1^2 + m_2 l_{c2} g \sin(q_1 + q_2 + \alpha) = \tau_2$$
(4.33)

Siendo τ_1 el par que actúa en la articulación 1, la cual es la encargada de generar la flexión dorsal y flexión plantar para la rodilla, mientras que τ_2 es el par en la articulación del tobillo. El modelo obtenido en 4.32 y 4.33 puede escribirse de la siguiente manera:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau \tag{4.34}$$

o bien

$$\begin{bmatrix} M_{11}(q) & M_{12}(q) \\ M_{21}(q) & M_{22}(q) \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} C_{11}(q, \dot{q}) & C_{12}(q, \dot{q}) \\ C_{21}(q, \dot{q}) & C_{22}(q, \dot{q}) \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} + \begin{bmatrix} g_1(q) \\ g_2(q) \end{bmatrix} = \begin{bmatrix} \tau_1 \\ \tau_2 \end{bmatrix}$$
(4.35)

donde M(q) es simétrica y representa la matriz de Inercia, $C(q, \dot{q}_1)$ la matriz de fuerzas centrífuga y de Coriolis que contiene los símbolos de Christoffel, g(q) es un vector de nx1 de fuerzas o pares gravitacionales y τ es un vector de nx1 de fuerzas externas, siendo generalmente los pares y fuerzas aplicadas por los actuadores en las articulaciones. Las matrices se expresan de la siguiente forma:

$$M_{11}(q) = I_1 + I_2 + m_2 l_1^2 + m_1 l_{c1}^2 + m_2 l_{c2}^2 + 2m_2 l_1 l_{c2} \cos(q_2 + \alpha)$$

$$M_{12}(q) = I_2 + m_2 l_{c2}^2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha)$$

$$M_{21}(q) = I_2 + m_2 l_{c2}^2 + m_2 l_1 l_{c2} \cos(q_2 + \alpha)$$

$$M_{22}(q) = I_2 + m_2 l_{c2}^2$$

$$C_{11}(q, \dot{q}) = -m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_2$$

$$C_{12}(q, \dot{q}) = -m_2 l_1 l_{c2} \sin(q_2 + \alpha) [\dot{q}_1 + \dot{q}_2]$$

$$C_{21}(q, \dot{q}) = m_2 l_1 l_{c2} \sin(q_2 + \alpha) \dot{q}_1$$

$$C_{22}(q, \dot{q}) = 0$$

$$g_1(q) = [m_1 l_{c1} + m_2 l_1] g \sin(q_1) + m_2 g l_{c2} \sin(q_1 + q_2 + \alpha)$$

$$g_2(q) = m_2 g l_{c2} \sin(q_1 + q_2 + \alpha)$$
(4.36)

5 Control de movimiento

Ya que se obtiene la dinámica del sistema, se proponer una ley de control que permita mover al prototipo siguiendo una trayectoria deseada. Para el sistema se tendrán dos actuadores para los movimientos de flexión-extensión de la rodilla y el tobillo. Por lo que, la ley de control se diseña para que $q_1 y q_2$ siga una trayectoria deseada. Se propone aplicar un control de tipo modos deslizantes de alto orden terminal [42].

5.1. Algoritmo de control

Considere la siguiente hipótesis:

 Se asume que el exoesqueleto está sujeto a incertidumbres en los parámetros del modelo dinámico, es decir, se considera que no se conocen los valores reales de los parámetros; sin embargo, se cuenta con un estimado, por lo tanto:

$$M(q) = M_e(q) + M_\Delta(q) \tag{5.1}$$

donde $M_e(q) \in R^{nxn}$ contiene los parámetros estimados de la matriz de inercia M(q), mientras que $M_{\Delta}(q, m_n) \in R^{nxn}$ contiene los parámetros desconocidos.

La ecuación 4.34 se puede extender:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) + \delta(q,\dot{q}) - \tau_d = \tau$$
(5.2)

donde $\delta(\dot{q})$ representa el vector de fricción, mientras que τ_d es el vector de las perturbaciones externas. Sustituyendo las ecuaciones en 5.1 en la ecuación 5.2

$$\begin{split} &[M_e(q) + M_{\Delta}(q)]\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + \delta(q,\dot{q}) - \tau_d = \tau \\ &[M_e(q) + M_{\Delta}(q)]\ddot{q} = -C(q,\dot{q})\dot{q} - g(q) - \delta(q,\dot{q}) + \tau_d + \tau \\ &M_e(q)\ddot{q} + M_{\Delta}(q)\ddot{q} = -C(q,\dot{q})\dot{q} - g(q) - \delta(q,\dot{q}) + \tau_d + \tau \end{split}$$
(5.3)

Despejar \ddot{q}

$$\begin{split} M_{e}(q)\ddot{q} &= -M_{\Delta}(q)\ddot{q} - C(q,\dot{q})\dot{q} - g(q) - \delta(q,\dot{q}) + \tau_{d} + \tau \\ \ddot{q} &= M_{e}(q)^{-1}[-M_{\Delta}(q)\ddot{q} - C(q,\dot{q})\dot{q} - g(q) - \delta(q,\dot{q}) + \tau_{d} + \tau] \\ &= M_{e}(q)^{-1}\tau + M_{e}(q)^{-1}[-M_{\Delta}(q)\ddot{q} - C(q,\dot{q})\dot{q} - g(q) - \delta(q,\dot{q}) + \tau_{d}] \\ &= M_{e}(q)^{-1}\tau - M_{e}(q)^{-1}[M_{\Delta}(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + \delta(q,\dot{q}) - \tau_{d}] \end{split}$$
(5.4)

Entonces la ecuación 5.3 se puede reescribir

$$\ddot{q} = M_e(q)^{-1}\tau - F(q, \dot{q}, \ddot{q})$$
(5.5)

donde

$$F(q, \dot{q}, \ddot{q}) = M_e(q)^{-1} [M_\Delta(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) + \delta(q, \dot{q}) - \tau_d]$$
(5.6)

representa la dinámica desconocida del robot. El error de seguimiento:

$$e = q_d - q \tag{5.7}$$

$$\dot{e} = \dot{q}_d - \dot{q} \tag{5.8}$$

$$\ddot{e} = \ddot{q}_d - \ddot{q} = \ddot{q}_d - M_e^{-1}(q)\tau + F(q, \dot{q}, \ddot{q})$$
(5.9)

También se asume que la dinámica desconocida, $F(q, \dot{q}, \ddot{q})$ así como su derivada, $\dot{F}(q, \dot{q}, \ddot{q})$ satisfacen las siguientes condiciones:

$$\|F(q, \dot{q}, \ddot{q})\| \le \Lambda_1^T B_1 \|\dot{F}(q, \dot{q}, \ddot{q})\| \le \Lambda_2^T B_2$$
(5.10)

donde $\Lambda_1 = \begin{bmatrix} 1 & \|q\| & \|\dot{q}\|^2 \end{bmatrix}^T$ y $\Lambda_2 = \begin{bmatrix} 1 & \|q\| & \|\dot{q}\|^2 \end{bmatrix}^T$; mientras que B_1 y $B_2 \in \mathbb{R}^3$ son vectores contantes positivos[42].

Para la superficie deslizante se define la siguiente variable:

$$\sigma = e + \Gamma \int_0^t e^{[v]}(\tau) d\tau$$
(5.11)

$$\dot{\sigma} = \dot{e} + \Gamma e^{[v]} \tag{5.12}$$

donde $\sigma = [\sigma_1, \sigma_2, ..., \sigma_n]^T$, $e^{[v]} = |e|^v sign(e)$, 0 < v < 1 mientras que $\Gamma \in \mathbb{R}^{n \times n}$ es una matriz diagonal positiva.

La superficie deslizante queda descrita como:

$$s = \ddot{e} + \beta \dot{\sigma} + \alpha \sigma$$

= $\ddot{q}_d - M_e^{-1}(q)\tau + F(q, \dot{q}, \ddot{q}) + \beta (\dot{e} + \Gamma e^{[v]}) + \alpha \left(e + \Gamma \int_0^t e^{[v]}(\tau) d\tau\right)$ (5.13)

La ley de control se define como:

$$\tau = M_e[\tau_a + \tau_b] \tag{5.14}$$

donde τ_a es la entrada de control para los términos conocidos, mientras que τ_b se utiliza para compensar la dinámica desconocida.

Sustituyendo la ecuación 5.14 en 5.13.

$$s = \ddot{q}_{d} - M_{e}^{-1}(q)\tau + F(q, \dot{q}, \ddot{q}) + \beta(\dot{e} + \Gamma e^{[v]}) + \alpha \left(e + \Gamma \int_{0}^{t} e^{[v]}(\tau)d\tau\right)$$

= $\ddot{q}_{d} - \tau_{a} - \tau_{b} + F(q, \dot{q}, \ddot{q}) + \beta(\dot{e} + \Gamma e^{[v]}) + \alpha \left(e + \Gamma \int_{0}^{t} e^{[v]}(\tau)d\tau\right)$ (5.15)

Definiendo la entrada de control τ_a como:

$$\tau_a = \ddot{q}_d + \beta(\dot{e} + \Gamma e^{[v]}) + \alpha \left(e + \Gamma \int_0^t e^{[v]}(\tau) d\tau \right)$$
(5.16)

Aplicando la ecuación 5.16 en 5.15

$$s = -\tau_b + F(q, \dot{q}, \ddot{q}) \tag{5.17}$$

Derivando la ecuación 5.17

$$\dot{s} = -\dot{\tau}_b + \dot{F}(q, \dot{q}, \ddot{q}) \tag{5.18}$$

5.2. Prueba de estabilidad

Se propone la función candidata de Lyapunov:

$$V = \frac{1}{2}s^T s \tag{5.19}$$

Obteniendo la derivada de V a lo largo de las trayectorias del sistema

$$\dot{V} = s^T \dot{s} \tag{5.20}$$

Sustituyendo la ecuación 5.18 en la ecuación 5.20

$$\dot{V} = s(t)^{T} \dot{s}(t) = s(t)^{T} [-\dot{\tau}_{b} + \dot{F}(q, \dot{q})]$$
(5.21)

La entrada de control τ_b se diseña de tal forma que incluya la superficie deslizante, además para obtener una entrada de control suave, se emplea un filtro pasa bajas. Por lo tanto, τ_b queda definida como [42]:

$$\dot{\tau}_b + c\tau_b = (\Lambda_1^T P + \Lambda_2^T B_2) sign(s) + K sign(s)$$
(5.22)

$$\Lambda_1^T P \ge c \Lambda_1^T B_1 \tag{5.23}$$

donde $K = diag(k_1, k_2, ..., k_n)$ es una matriz diagonal positiva, P es un vector constante positivo y c > 0.

$$\dot{V} = s^{T} \dot{s}
= s^{T} [-\dot{\tau}_{b} + \dot{F}(q, \dot{q}, \ddot{q})]
= s^{T} [-(\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2})sign(s) - Ksign(s) + c\tau_{b} + \dot{F}(q, \dot{q}, \ddot{q})]
= -s^{T} (\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2})sign(s) - s^{T}Ksign(s) + s^{T}c\tau_{b} + s^{T}\dot{F}(q, \dot{q}, \ddot{q})$$
(5.24)

Restringiendo la entrada de control τ_b para que su valor absoluto sea menor que la cota de la dinámica desconocida $F(q, \dot{q}, \ddot{q})$, la desigualdad 5.23 se puede reescribir como:

$$c|\tau_b| \le c\Lambda_1^T B_1 \le \Lambda_1^T P \tag{5.25}$$

aplicando las desigualdades 5.25 y 5.10 en la ecuación 5.24 se tiene:

$$\dot{V} \leq -s^{T}(\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2})sign(s) - s^{T}Ksign(s) + s^{T}\Lambda_{1}^{T}P + s^{T}\Lambda_{2}^{T}B_{2}
\leq -s^{T}(\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2})sign(s) - s^{T}Ksign(s) + s^{T}(\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2})
\leq - \|s\|\|\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2}\| - K\|s\| + \|s\|\|\Lambda_{1}^{T}P + \Lambda_{2}^{T}B_{2}\|
\leq -K\|s\|$$
(5.26)

Recordando que

$$||s|| = \sqrt{s_1^2 + s_2^2} \tag{5.27}$$

y desarrollando la ecuación 5.19

$$V = \frac{1}{2} s^{T} s$$

$$V = \frac{1}{2} \begin{bmatrix} s_{1} & s_{2} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix}$$

$$V = \frac{1}{2} (s_{1}^{2} + s_{2}^{2})$$
(5.28)

Sacando la raíz cuadrada de la ecuación 5.28

$$V^{\frac{1}{2}} = \sqrt{\frac{1}{2}(s_1^2 + s_2^2)}$$

= $\sqrt{\frac{1}{2}}\sqrt{(s_1^2 + s_2^2)}$
= $k\sqrt{(s_1^2 + s_2^2)}$ (5.29)

entonces se puede ver que

$$\dot{V} \le -KV^{1/2}$$
 (5.30)

5.3. Resultados numéricos

Para la simulación se empleó el entorno Simulink para el modelado, simulación y análisis del sistema dinámicos mediante diagramas de bloques.

Los parámetros del exoesqueleto se encuentran en la Tabla 5.1 Los parámetros para el control se encuentran en la Tabla 5.2 La trayectoria propuestas para la rodilla y sus derivadas son:

$$q_{d1} = 55\sin(0.01t) + 55;$$

$$\dot{q}_{d1} = 0.55\cos(0.01t);$$

$$\ddot{q}_{d1} = -0.0055\sin(0.01t);$$

mientras que para el tobillo se tiene:

$$q_{d2} = 25\sin(0.01t) + 97;$$

$$\dot{q}_{d2} = 0.25\cos(0.01t);$$

$$\ddot{q}_{d2} = -0.0025\sin(0.01t);$$

5. CONTROL DE MOVIMIENTO

Parámetro	Variable	Valor
Masa del eslabón 1	m_1	$0.25 \ kg$
Masa del eslabón 2	m_2	$0.793 \ kg$
Centro de masa del eslabón 1	l_{c1}	$0.193 \ m$
Centro de masa del eslabón 1	l_{c2}	$0.09 \ m$
Longitud del eslabón 1	l_1	$0.38\ m$
Inercia del eslabón 1	I_1	$0.22 \ kgm^2$
Inercia del eslabón 2	I_2	$0.32 \ kgm^2$
Alpha	α	9.6°

Tabla 5.1: Parámetros del exoesqueleto empleados

Parámetro	Variable	Valor	
Alpha	α	0.05	
Beta	β	50	
Gamma	Г	diag(3,3)	
v	v	0.8	
k	k	$\operatorname{diag}(10,10)$	
с	С	5	
Р	p	$[1 \ 3 \ 16]^T$	
B_2	B_2	$[1 \ 3 \ 4]^T$	

Las fuerzas externas $\tau_d = 0$ Las condiciones iniciales son:

$$q(0) = 0$$
$$\dot{q}(0) = 0$$

En la Figura 5.1 se presenta el diagrama a bloques del controlador.

5. CONTROL DE MOVIMIENTO

Figura 5.1: Simulación del modelo del robot con el controlador propuesto en Simulink

Figura 5.2: Trayectoria de la rodilla

5. CONTROL DE MOVIMIENTO

Figura 5.4: Error de seguimiento de la rodilla

Figura 5.5: Error de seguimiento del tobillo

Los resultados de la simulación se muestran en la Figura 5.2 para el seguimiento de trayectoria de la rodilla y en la Figura 5.3 para el tobillo, en donde la línea roja es la trayectoria deseada para ambos casos, mientras que la línea azul corresponde a q_1 y la verde a q_2 , es decir, la posición angular de las articulaciones.

Se observa que ambas articulaciones siguen sus respectivas referencias.

En la Figura 5.4 se observa el error de seguimiento para la rodilla y en la Figura 5.5 para el tobillo, observando que el error en ambos casos tiende a cero.

Resultados experimentales

6

En este capítulo se muestran los resultados obtenidos al someter al rehabilitador de tobillo a la trayectoria propuesta utilizando un control PD con compensación de la gravedad. La implementación en LabVIEW del controlador se puede encontrar en los anexos.

6.1. Pruebas experimentales

Se realizaron distintas pruebas para adecuar las ganancias del controlador.

El control PD con compensación de la gravedad es sencillo de implementar y una buena forma de verificar que el prototipo funcione correctamente.

La ley de control requiere del conocimiento de una parte del modelo dinámico del robot, ya que este usa el vector de pares gravitacionales g(q).

La ley de control PD con compensación de gravedad está representada por:

$$\tau = K_p \tilde{q} + K_v \dot{\tilde{q}} + g(q) \tag{6.1}$$

donde $K_p, K_v \in \mathbb{R}^{nxn}$ son matrices simétricas definidas positivas. Entonces, para implementar esa ley de control mostrada en 6.1 es posible separar en dos ecuaciones diferentes, las cuales son mostradas en 6.2 y serán de utilidad al hacer la implementación en LabVIEW.

$$\tau_1 = K_{p1}\tilde{q}_1 + K_{v1}\tilde{q}_1 + g_1(q)$$

$$\tau_2 = K_{p2}\tilde{q}_2 + K_{v2}\dot{\tilde{q}}_2 + g_2(q)$$
(6.2)

donde $g_1(q)$ y $g_2(q)$ se muestran en 4.36.

Las pruebas experimentales fueron con un modelo de 2 GDL, es decir, rodilla y tobillo; sin embargo, solo se le va a aplicar el control a la articulación del tobillo, por lo tanto, $\tau_1 = 0$. Los parámetros empleados son:

Las variables en la Tabla 6.1 se pueden ver en la Figura 4.1.

Las ganancias del controlador están en la Tabla 6.2

6. RESULTADOS EXPERIMENTALES

Parámetro	Variable	Valor
Masa del eslabón 1	m_1	0.25 kg
Masa del eslabón 2	m_2	0.793 kg
Centro de masa del eslabón 1	l_{c1}	0.193 m
Centro de masa del eslabón 1	l_{c2}	0.09 m
Longitud del eslabón 1	l_1	0.38 m
Alpha	α	9.6°

Tabla 6.1: Parámetros empleados

Ganancia	Valor
K_{p2}	1.8
K_{v2}	0.001

Tabla 6.2: Ganancias empleadas para el controlador

En la Figura 6.1 están los resultados experimentales de una rutina de rehabilitación pasiva para el seguimiento de una trayectoria utilizando un controlador PD con compensación de la gravedad, la gráfica muestra la evolución de la articulación del tobillo. En la Figura 6.2 se encuentra el error de seguimiento para el tobillo.

Figura 6.1: Prueba experimental del seguimiento de trayectoria

Figura 6.2: Error de seguimiento

Conclusiones

7

En esta tesis se diseñó y fabricó un exoesqueleto para la asistencia de los movimientos de flexión-extensión de la articulación del tobillo, para lo cual fue necesario conocer algunos temas relacionados a la robótica médica, así como con la biomecánica del cuerpo humano. El prototipo fue diseñado en SolidWorks y se realizó un estudio de esfuerzos para determinar el material y las dimensiones a utilizar, con el fin de que soporte las cargas y sea seguro para el usuario, por lo tanto, se logró un prototipo con una estructura ligera y resistente, que puede ser ajustado a un rango de pacientes con diferentes características, para la rehabilitación pasiva del tobillo.

La articulación es capaz de ser integrada en el exoesqueleto para la rehabilitación de la marcha que se tiene en el laboratorio UMI LAFMIA, generando que se pueda trabajar la flexión y extensión de cadera, rodilla y tobillo.

Se obtuvo el modelo dinámico que gobierna el movimiento del robot considerando las articulaciones de la rodilla y tobillo, el cual se desarrolló a partir de las ecuaciones de Euler-Lagrange. Se propuso una ley de control robusta basada en modos deslizantes de alto orden terminal para estudiar el comportamiento del prototipo al someterlo a una trayectoria establecida, los errores de seguimiento convergen a un valor acotado cercano a cero.

Se realizaron pruebas experimentales empleando un control PD con compensación de la gravedad, el cual generó que la articulación del tobillo siga la trayectoria deseada y el error de seguimiento máximo fue de 2°.

8 Trabajo futuro

Se desea realizar pruebas experimentales con el control por modos deslizantes de alto orden terminal para mejorar el seguimiento de las trayectorias propuestas y publicar un artículo de revista. Se planea mejorar el diseño del prototipo para que sea más fácil acoplar una ortesis de miembro inferior y que sea de mayor comodidad para el portador. Se desea implementar diversos sensores para en un futuro poder hacer rehabilitación activa.

Anexos

9

9.1. Implementación

El controlador que se empleó en este exoesqueleto es la tarjeta MyRio, la cual fue programada mediante el software LabVIEW.

Figura 9.1: Controlador MyRIO [43]

El diagrama de las conexiones de la tarjeta se observa en la Figura 9.2

Figura 9.2: Mapa de conexión - MyRIO [43]

De la tarjeta se va a emplear el puerto de expansión MXP, su diagrama de conexión se muestra en la Figura 9.3.

Figura 9.3: Puerto de expansión MXP [43]

Para nuestro caso en particular solo será necesario utilizar el puerto B.

Por otro lado, para poder controlar los motores seleccionados previamente es necesario enviar y recibir información, la cual es generada en paquetes, de los cuales existen dos tipos diferentes, el paquete de instrucción empleado para controlar el Dynamixel, y el paquete de estado, el cual es la respuesta del motor.

El paquete de instrucción es de la forma:

C 1	C 2	ID	L	Ι	P_1	• • •	P_N	Checksum
0xFF	0xFF	Id	Longitud	Instrucción	P_1	• • •	P_N	Checksum

Tabla 9.1: Paquete de instrucción

Cabecera (C)

La cabecera indica el inicio del paquete de datos.

ID

El ID es el número de identificación del motor que va a recibir la instrucción, se puede emplear el rango 0 - 253(0x00 - 0xFD), o se puede usar 254(0xFE) para que todos los motores conectados reciban la instrucción.

Longitud(L)

Longitud es el tamaño del paquete que va a ser empleado, y depende de la instrucción.

Instrucción(I)

La instrucción es la acción que va a realizar el motor, para este caso solo se van a emplear las instrucciones mostradas en la Tabla 9.2.

Valor	Instrucción	Descripción
0x83	Escritura sincronizada (Sync Write)	Escribir información en múltiples motores
0x92	Lectura masiva (Bulk read)	Leer información de múltiples motores

Tabla 9.2: Tipo de instrucciones empleadas

Parámetros

Los parámetros es información adicional que es necesaria para poder realizar la instrucción dicha información se encuentra en [40] en las secciones 2.2 y 2.3.

Los parámetros empleados se muestran en la Tabla 9.3

Dirección	Byte	Descripción
30(0x1E)	2	Posición deseada
36(0x24)	2	Posición real
38(0x26)	2	Velocidad real

Tabla 9.3: Parámetros empleados

Checksum

El Checksum es para checar si el paquete de datos está dañado, para calcularlo se emplea

Checksum =
$$\sim$$
 (ID + Longitud + Instricción + $P_1 + \dots + P_N$) (9.1)

donde: el símbolo \sim indica que se debe calcular el complemento a unos binarios. Cuando el resultado del cálculo del paréntesis en la fórmula anterior es mayor que 255 (0xFF), se usa solo bytes inferiores[44].

El paquete de estado es de la forma

C 1	C 2	ID	L	Error	P_1		P_N	Checksum
0xFF	0xFF	Id	Longitud	Error	P_1	•••	P_N	Checksum

Tabla 9.4: Paquete de estatus

El tipo de error y su valor se pueden ver en [44]. Los paquetes de datos empleados fueron los mostrados en la Tabla 9.5. La posición deseada de

Instrucción	Paquete de datos
Escribir posición	FF FF FE 0A 83 1E 02 01 XX YY 02 XX YY Checksum
Leer posición	FF FF FE 09 92 00 02 01 24 02 02 24 17
Leer velocidad	FF FF FE 09 92 00 02 01 26 02 02 26 13

Tabla 9.5: Paquetes de instrucciones para 2 motores

cada motor está definida como

$$P_d = YYXX \tag{9.2}$$

pero al generar el paquete de instrucción primero se debe mandar el byte bajo y posteriormente el alto como se puede ver en la Tabla 9.5, las posiciones deseadas de cada motor pueden ser diferentes.

En la Figura 9.4 se muestra la conexión entre la tarjeta y el motor MX-106T.

Figura 9.4: Diagrama de conexión entre MyRIO y el motor

Si se desea utilizar más de 1 motor, estos se deben conectar a través del puerto TTL mediante el cable correspondiente.

Para controlar el motor es necesario crear un programa en LabVIEW, el diagrama completo se encuentra en la Figura 9.5.

Figura 9.5: Diagrama de LabVIEW completo

Para poder visualizar de mejor manera, la Figura 9.5 se divide en 2 partes mostradas en las Figuras 9.6 y 9.7.

Figura 9.6: Diagrama de LabVIEW 1

Figura 9.7: Diagrama de LabVIEW 2

La sección **Trayectoria** es en donde se escribe la trayectoria que se desea que siga el motor para realizar la rehabilitación del tobillo, la ecuación empleada es:

$$T = 25\sin(0.01t) + 97\tag{9.3}$$

mientras que para la velocidad se deriva la ecuación 9.3 y se obtiene

$$T_p = 0.25\cos(0.01t) \tag{9.4}$$

La sección **Write velocidad** es para decirle al motor que se desea leer la velocidad, para ello el paquete de datos empleado es:

Valor lógico	Descripción		
Verdadero	Transmitir información		
Falso	Recibir información		

FF FF FE 09 92 00 02 01 26 02 02 26 13

Tabla 9.6: Transmitir o Recibir información

Es importante mencionar que el motor tiene una comunicación del tipo semiduplex, es decir Tx y Rx no se pueden usar al mismo tiempo, por lo tanto, es necesario emplear un pin digital que genere el cambio entre líneas como se muestra en la Tabla 9.6

La sección **Read posición** es para leer la posición actual del motor, para ello es necesario mandar el pin digital a falso, el paquete de datos que se recibe es de la forma

FF FF 01 04 00 XX YY Checksum

donde la posición actual es YY XX, ese valor está en hexadecimal y se debe pasar a decimal, para después multiplicar por la unidad 0.088°.

La sección **Write posición** es para decirle al motor que se desea leer la posición actual, inicialmente se manda el pin digital a verdadero y el paquete de datos empleado es:

FF FF FE 09 92 00 02 01 24 02 02 24 17

La sección **Read velocidad** es para leer la velocidad actual del motor, para ello es necesario mandar el pin digital a falso, el paquete de datos que se recibe es de la forma

FF FF 01 04 00 BB AA Checksum

donde la velocidad actual es AA BB, dicho valor está en hexadecimal y es necesario pasarlo a decimal y luego se debe recordar que el motor maneja la velocidad de 0 - 1024 como se puede ver en la Tabla 9.7. y la unidad para transformar el valor es 0.11RPM

Velocidad	Giro	Velocidad [RPM]
0 a 512	Antihorario	-0 a -116
513 a 1024	Horario	0 a 116

Tabla 9.7: Relación de velocidad

La sección Control calcula el error de posición,

$$\tilde{q} = E_p = q_d - q \tag{9.5}$$

el error de velocidad,

$$\tilde{\dot{q}} = E_v = \dot{q}_d - \dot{q} \tag{9.6}$$

obtener el valor de g_2

$$g_2 = m_2 g l_{c2} sin(q_1 + q_2 + \alpha) \tag{9.7}$$

la entrada de control

$$\tau_2 = q2 + K_{p2}\tilde{q}_2 + K_{v2}\dot{\tilde{q}}_2 + g_2(q) \tag{9.8}$$

y genera el paquete de datos con la τ_2 calculada.

En la última sección del programa se pasa el pin digital a verdadero para transmitir el paquete. Los tiempos entre cada sección son importantes, ya que si no son los adecuados no se transmitirán o recibirán los paquetes de datos completos.

Finalmente, se tiene la sección Gráficas donde se pueden observar los resultados.

Por otro lado, en la Figura 9.8 se puede ver la interfaz usada por el usuario, la cual tiene paro de emergencia, así como botones para seleccionar las ganancias y gráficas para observar el comportamiento de la articulación.

Figura 9.8: Interfaz de usuario del programa principal

Bibliografía

- SEDESOL. Diagnóstico sobre la situación de las personas con discapacidad en méxico, Mayo 2016.
- [2] Sergio Rosario Salazar Yukio Rosales Luengas, Jesús Ricardo López Gutiérrez and Cruz Rogelio Lozano Leal. Exoesqueleto para rehabilitación con articulaciones elásticas, 2020.
- [3] Iberdola. Qué son los exoesqueletos y cómo pueden ayudarnos a superar nuestras limitaciones humanas. https://www.iberdrola.com/innovacion/que - son - los exoesqueletos.
- [4] Proviem. Prótesis de brazo. https://proviem.com.mx/protesis-de-brazo/.
- [5] Ortopedia Verastegui. Prótesis de pierna. https://verasteguiprotesica.com/wp content/uploads/2020/12/generic image 550x413.jpg.
- [6] Inma Moscardo. Hank, el exoesqueleto portátil que ayuda a volver a caminar, 2019. https://cincodias.elpais.com/cincodias/2019/08/20/companias/1566292598₂09098.html.
- [7] Durfee W. Krebs H.I, Hogan N. and Herr H. *Textbook of Neural Repair and Rehabilitation*. Cambridge University Press, 2014.
- [8] Grand view research. Exoskeleton market size, share and trends analysis report by mobility (mobile, fixed), by technology (powered, non-powered), by extremity, by end-use, by region, and segment forecasts, 2022 – 2030, 2021.
- [9] Jacob. Rosen and Peter Walker. Ferguson. *Wearable robotics : systems and applications*. Academic Press, 2020.
- [10] OMS. Rehabilitación, Noviembre de 2021.
- [11] Yupeng Zou, Andong Zhang, Qiang Zhang, Baolong Zhang, Xiangshu Wu, and Tao Qin. Design and experimental research of 3-rrs parallel ankle rehabilitation robot. *Micromachines*, 13, 6 2022.
- [12] Dang Phuoc PHAM Minh Duc Dao, Xuan Tuy TRAN and Quoc Anh NGO. Study on the ankle rehabilitation device. *Polska Akademia Nauk*, 69:147–163, 2022.

- [13] Prabhat Pathak Haisheng Xia, Junghan Kwon and Peter B. Shull. Design of a multifunctional soft ankle exoskeleton for foot-drop prevention, propulsion assistance, and inversion/eversion stabilization. *International Conference for Biomedical Robotics and Biomechatronics*, 2020.
- [14] Pham Dang Phuoc Dao Minh Duc, Le Thi Thuy Tram and Tran Xuan Tuy. Study on ankle rehabilitation device using linear motor. *International Conference on System Science and Engineering*, 2019.
- [15] Jianjun Wei Zhengdi Sun, Chunbao Wang and Quanquan Liu. Mechanism design and adams-matlab-simulation of a novel ankle rehabilitation robot. *International Conference on Robotics and Biomimetics*, 2019.
- [16] Xinyu Sun Jinsong Zhao, Tao Yang and Zhipeng Wang. Sliding mode control combined with extended state observer for an ankle exoskeleton driven by electrical motor. *Mechatronics*, 76, 6 2021.
- [17] Junghan Kwon, Ji Hong Park, Subyeong Ku, Yeong Hyeon Jeong, Nam Jong Paik, and Yong Lae Park. A soft wearable robotic ankle-foot-orthosis for post-stroke patients. *IEEE Robotics and Automation Letters*, 4:2547–2552, 7 2019.
- [18] Jiun-Yih Kuan Albert Wu, Xingbang Yang and Hugh M. Herr. An autonomous exoskeleton for ankle plantarflexion assistance. *International Conference on Robotics and Automation*, pages 1713–1719, 2019.
- [19] Marco Ceccarelli Idumudi Venkata Sai and Matteo Russo. Control design for cableankle, a cable driven manipulator for ankle motion assistance. *Actuators*, 11, 2 2022.
- [20] Mingjie Dong Jianfeng Li, Wenpei Fan and Xi Rong. Research on control strategies for ankle rehabilitation using parallel mechanism. *Cognitive Computation and Systems*, 2:105–111, 9 2020.
- [21] Jianfeng Li Mingjie Dong, Wenpei Fan and Yu Zhou. A new ankle robotic system enabling whole-stage compliance rehabilitation training. *IEEE/ASME Transactions on Mechatronics*, 26:1490–1500, 6 2021.
- [22] OMS. Discapacidad y salud, Noviembre de 2021.
- [23] Cinthia Serrano MD. Sistema musculoesquelético, 2010.
- [24] Julia Reiriz Palacios. Sistema locomotor.
- [25] Pilerite. Posición anatómica básica. http://pilerite.com/posicion anatomica.
- [26] Pedro Caffaro. Teoría del movimiento, 2020.
- [27] Marlene Moran. Ejes y planos del cuerpo humano. *https* : //www.pinterest.es/pin/136937644904141813/.
- [28] A Viladot Voegeli. Anatomía funcional y biomecánica del tobillo y el pie, 2003.

- [29] Navarro García R Sous Sánchez José O, Navarro Navarro R and Brito Ojeda E. Bases biomecánicas del tobillo, 2011.
- [30] César González Lucia Marino, Yomar González and Marcel Rupcich. Propuesta de modelo multisegmento del pie para el análisis de marcha, 2013.
- [31] Tsoi Y. and Xie S. Design and control of a parallel robot for ankle rehabilitation. *International Conference on Mechatronics and Machine Vision in Practice*, 2010.
- [32] Jie Chen Sorin Siegier and C D Schneck. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints-part i: Kinematics 1. *Transactions of the ASME*, 1988.
- [33] Ernesto ramírez Cárdenas Mauricio López Acosta and Allán Chacara Montes. Antropometría para el diseño de puestos de trabajo, 2019.
- [34] Lilia R. Prado León Rosalio Avil Chaurand and Elvia L. González Muñoz. *Dimensiones antropométricas de la población latinoamericana*. Universidad de Guadalajara, 2001.
- [35] Salamarkesa. Antropometría estática y dinámica. https : //www.salamarkesa.com/antropometria – estatica – y – dinamica/.
- [36] Pierre Bannier Haifeng Jin, Paul Goodrum and Paul M Goodrum. Modeling of work envelope requirements in the piping and steel trades and the influence of global anthropomorphic characteristics, 2016.
- [37] Esperanza Valero Cabello. Antropometria.
- [38] Soto V. M. and Gutiérrez M. Parámetros inerciales para el modelado biomecánico del cuerpo humano, 1996.
- [39] Wendi Weimar Nancy Hamilton and Kathryn Luttgens. *Kinesiology : scientific basis of human motion*. McGraw-Hill, 2012.
- [40] ROBOTIS. Mx-106t/r. https://emanual.robotis.com/docs/en/dxl/mx/mx 106/.
- [41] V. Santibáñez R. Kelly and A. Loría. Control of robot manipulators in joint space. Springer, 2005.
- [42] Haoping Wang Saim Ahmed and Yang Tian. Adaptive fractional high-order terminal sliding mode control for nonlinear robotic manipulator under alternating loads. *Asian Journal of Control*, 23, 7 2021.
- [43] National Instruments. myrio-1900 getting started guide and specifications. https : //www.ni.com/docs/enUS/bundle/myri - 1900 - getting started/resource/376047d.pdf.
- [44] ROBOTIS. Dynamixel protocol 1.0 robotis e-manual. https : //emanual.robotis.com/docs/en/dxl/protocol1/.